ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the complex pattern of information spreading in online blog communities

179   0   0.0 ( 0 )
 نشر من قبل Sen Pei
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems and could inform design of efficient propagation strategies based on users behaviors.



قيم البحث

اقرأ أيضاً

The propagations of diseases, behaviors and information in real systems are rarely independent of each other, but they are coevolving with strong interactions. To uncover the dynamical mechanisms, the evolving spatiotemporal patterns and critical phe nomena of networked coevolution spreading are extremely important, which provide theoretical foundations for us to control epidemic spreading, predict collective behaviors in social systems, and so on. The coevolution spreading dynamics in complex networks has thus attracted much attention in many disciplines. In this review, we introduce recent progress in the study of coevolution spreading dynamics, emphasizing the contributions from the perspectives of statistical mechanics and network science. The theoretical methods, critical phenomena, phase transitions, interacting mechanisms, and effects of network topology for four representative types of coevolution spreading mechanisms, including the coevolution of biological contagions, social contagions, epidemic-awareness, and epidemic-resources, are presented in detail, and the challenges in this field as well as open issues for future studies are also discussed.
169 - Sen Pei , Hernan A. Makse 2013
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Identifying the node spreading influence in networks is an important task to optimally use the network structure and ensure the more efficient spreading in information. In this paper, by taking into account the shortest distance between a target node and the node set with the highest $k$-core value, we present an improved method to generate the ranking list to evaluate the node spreading influence. Comparing with the epidemic process results for four real networks and the Barab{a}si-Albert network, the parameterless method could identify the node spreading influence more accurately than the ones generated by the degree $k$, closeness centrality, $k$-shell and mixed degree decomposition methods. This work would be helpful for deeply understanding the node importance of a network.
We analyze the game of go from the point of view of complex networks. We construct three different directed networks of increasing complexity, defining nodes as local patterns on plaquettes of increasing sizes, and links as actual successions of thes e patterns in databases of real games. We discuss the peculiarities of these networks compared to other types of networks. We explore the ranking vectors and community structure of the networks and show that this approach enables to extract groups of moves with common strategic properties. We also investigate different networks built from games with players of different levels or from different phases of the game. We discuss how the study of the community structure of these networks may help to improve the computer simulations of the game. More generally, we believe such studies may help to improve the understanding of human decision process.
197 - Ye Sun , Long Ma , An Zeng 2015
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreadi ng ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and medicine science the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا