ﻻ يوجد ملخص باللغة العربية
Aims. We observed the $tau$ Boo system with the HARPS-N spectrograph to test a new observational strategy aimed at jointly studying asteroseismology, the planetary orbit, and star-planet magnetic interaction. Methods. We collected high-cadence observations on 11 nearly consecutive nights and for each night averaged the raw FITS files using a dedicated software. In this way we obtained spectra with a high signal-to-noise ratio, used to study the variation of the CaII H&K lines and to have radial velocity values free from stellar oscillations, without losing the oscillations information. We developed a dedicated software to build a new custom mask that we used to refine the radial velocity determination with the HARPS-N pipeline and perform the spectroscopic analysis. Results. We updated the planetary ephemeris and showed the acceleration caused by the stellar binary companion. Our results on the stellar activity variation suggest the presence of a high-latitude plage during the time span of our observations. The correlation between the chromospheric activity and the planetary orbital phase remains unclear. Solar-like oscillations are detected in the radial velocity time series: we estimated asteroseismic quantities and found that they agree well with theoretical predictions. Our stellar model yields an age of $0.9pm0.5$ Gyr for $tau$ Boo and further constrains the value of the stellar mass to $1.38pm0.05$ M$_odot$.
[abridged] We analyse four transits of WASP-33b observed with the optical high-resolution HARPS-N spectrograph to confirm its nodal precession, study its atmosphere and investigate the presence of star-planet interactions.We extract the mean line pro
XO-2 is the first confirmed wide stellar binary system where the almost twin components XO-2N and XO-2S have planets. This stimulated a detailed characterization study of the stellar and planetary components based on new observations. We collected hi
Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subseque
The HARPS/HARPS-N Data Reduction Software (DRS) relies on the cross-correlation between the observed spectra and a suitable stellar mask to compute a cross-correlation function (CCF) to be used both for the radial velocity (RV) computation and as an
Context. Identification of planetary companions of giant stars is made difficult because of the astrophysical noise, that may produce radial velocity (RV) variations similar to those induced by a companion. On the other hand any stellar signal is wav