ترغب بنشر مسار تعليمي؟ اضغط هنا

Maser Astrometry with VLBI and the SKA

144   0   0.0 ( 0 )
 نشر من قبل James Green Dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the unique opportunities for maser astrometry with the inclusion of the Square Kilometre Array (SKA) in Very Long Baseline Interferometry (VLBI) networks. The first phase of the SKA will enable observations of hydroxyl and methanol masers, positioning the latter to an accuracy of 5 microarcseconds, and the second phase may allow water maser observations. These observations will provide trigonometric distances with errors as small as 1%. The unrivalled sensitivity of the SKA will enable large-scale surveys and, through joint operations, will turn any VLBI network into a fast astrometry device. Both evolved stars and high mass star formation regions will be accessible throughout the (Southern) Milky Way, completing our understanding of the content, dynamics and history of our Galaxy. Maser velocities and proper motions will be measurable in the Local Group of galaxies and beyond, providing new insights into their kinematics and evolution.

قيم البحث

اقرأ أيضاً

70 - Hiroshi Imai 2016
This chapter summarizes radio astrometry in relation to current very long baseline interferometry (VLBI) projects and describes its perspectives with the SKA. The scientific goals of the astrometry with the SKA have been discussed in the internationa l and Japanese communities of researchers, whose major issues are shown here. We have demonstrated some of the issues, such as censuses of possible targets and the technical feasibility of astrometry in the SKA frequency bands. The preliminary results of our case studies on SKA astrometry are also presented. In addition, possible synergy and commensality of the SKA astrometric projects with those in the optical and infrared astrometric missions, especially JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) are discussed.
We conducted multi-epoch VLBA phase reference observations of LS I +61 303 in order to study its precessing radio jet. Compared to similar observations in 2006, we find that the observed elliptical trajectory of emission at 8.4 GHz repeats after the 9-year gap. The accurate alignment of the emission patterns yields a precession period of 26.926 +- 0.005 d, which is consistent with that determined by Lomb-Scargle analysis of the radio light curve. We analytically model the projection on the sky plane of the peak position of a precessing, synchrotron-emitting jet, which traces an elliptical trajectory on the sky. Comparing the simulation with the VLBA astrometry we improve our knowledge of the geometry of the system.We measure the LS I +61 303 absolute proper motion to be -0.150 +- 0.006 mas/yr eastward and -0.264 +- 0.006 mas/yr northward. Removing Galactic rotation, this reveals a small, < 20 km/s, non-circular motion, which indicates a very low kick velocity when the black hole was formed.
With the publication of Gaia DR2, 1.3 billion stars now have public parallax and proper motion measurements. In this contribution, we compare the results for sources that have both optical and radio measurements, focusing on circumstellar masers. For these large, variable and bright AGB stars, the VLBI astrometry results can be more robust. Moreover, there are a number of applications where VLBI astrometry provides unique data for studying stellar populations and Galactic structure. The BeSSel project not only provides parallax and proper motions at much larger distances than Gaia can reach, but it also uniquely samples the spiral arms of the Galaxy. The evolved stars in the BAaDE sample can potentially constrain the dynamics and stellar content of the inner bulge and bar of the Milky Way, not reachable in the optical.
We investigate which structures the 6.7 GHz methanol masers trace in the environment of high-mass protostar candidates by observing a homogenous sample of methanol masers selected from Torun surveys. We also probed their origins by looking for associ ated H II regions and IR emission. We selected 30 methanol sources with improved position accuracies achieved using MERLIN and another 3 from the literature. We imaged 31 of these using the European VLBI Networks expanded array of telescopes with 5-cm (6-GHz) receivers. We used the VLA to search for 8.4 GHz radio continuum counterparts and inspected Spitzer GLIMPSE data at 3.6-8 um from the archive. High angular resolution images allowed us to analyze the morphology and kinematics of the methanol masers in great detail and verify their association with radio continuum and mid-infrared emission. A new class of ring-like methanol masers in star--forming regions appeared to be suprisingly common, 29 % of the sample. The new morphology strongly suggests that methanol masers originate in the disc or torus around a proto- or a young massive star. However, the maser kinematics indicate the strong influence of outflow or infall. This suggests that they form at the interface between the disc/torus and a flow. This is also strongly supported by Spitzer results because the majority of the masers coincide with 4.5 um emission to within less than 1 arcsec. Only four masers are associated with the central parts of UC H II regions. This implies that 6.7 GHz methanol maser emission occurs before H II region observable at cm wavelengths is formed.
We present analyses to determine the fundamental parameters of the Galaxy based on VLBI astrometry of 52 Galactic maser sources obtained with VERA, VLBA and EVN. We model the Galaxys structure with a set of parameters including the Galaxy center dist ance R_0, the angular rotation velocity at the LSR Omega_0, mean peculiar motion of the sources with respect to Galactic rotation (U_src, V_src, W_src), rotation-curve shape index, and the V component of the Solar peculiar motions V_sun. Based on a Markov chain Monte Carlo method, we find that the Galaxy center distance is constrained at a 5% level to be R_0 = 8.05 +/- 0.45 kpc, where the error bar includes both statistical and systematic errors. We also find that the two components of the source peculiar motion U_src and W_src are fairly small compared to the Galactic rotation velocity, being U_src = 1.0 +/- 1.5 km/s and W_src = -1.4 +/- 1.2 km/s. Also, the rotation curve shape is found to be basically flat between Galacto-centric radii of 4 and 13 kpc. On the other hand, we find a linear relation between V_src and V_sun as V_src = V_sun -19 (+/- 2) km/s, suggesting that the value of V_src is fully dependent on the adopted value of V_sun. Regarding the rotation speed in the vicinity of the Sun, we also find a strong correlation between Omega_0 and V_sun. We find that the angular velocity of the Sun, Omega_sun, which is defined as Omega_sun = Omega_0 + V_sun/R_0, can be well constrained with the best estimate of Omega_sun = 31.09 +/- 0.78 km/s/kpc. This corresponds to Theta_0 = 238 +/- 14 km/s if one adopts the above value of R_0 and recent determination of V_sun ~ 12 km/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا