ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Hardware Correlator in Korea: Performance Evaluation using KVN observations

99   0   0.0 ( 0 )
 نشر من قبل Sang-Sung Lee
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sang-Sung Lee




اسأل ChatGPT حول البحث

We report results of the performance evaluation of a new hardware correlator in Korea, the Daejeon correlator, developed by the Korea Astronomy and Space Science Institute (KASI) and the National Astronomical Observatory of Japan (NAOJ). We conducted Very Long Baseline Interferometry (VLBI) observations at 22~GHz with the Korean VLBI Network (KVN) in Korea and the VLBI Exploration of Radio Astrometry (VERA) in Japan, and correlated the aquired data with the Daejeon correlator. For evaluating the performance of the new hardware correlator, we compared the correlation outputs from the Daejeon correlator for KVN observations with those from a software correlator, the Distributed FX (DiFX). We investigated the correlated flux densities and brightness distributions of extragalactic compact radio sources. The comparison of the two correlator outputs show that they are consistent with each other within $<8%$, which is comparable with the amplitude calibration uncertainties of KVN observations at 22~GHz. We also found that the 8% difference in flux density is caused mainly by (a) the difference in the way of fringe phase tracking between the DiFX software correlator and the Daejeon hardware correlator, and (b) an unusual pattern (a double-layer pattern) of the amplitude correlation output from the Daejeon correlator. The visibility amplitude loss by the double-layer pattern is as small as 3%. We conclude that the new hardware correlator produces reasonable correlation outputs for continuum observations, which are consistent with the outputs from the DiFX software correlator.



قيم البحث

اقرأ أيضاً

The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 and 43 GHz bands) observations in East Asia. Here, we report the first imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M 87. This is one of the initial result of KaVA early science. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous Very Long Baseline Array (VLBA) observations. Angular resolutions are better than 1.4 and 0.8 milliarcsecond at 23 GHz and 43 GHz, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.
We report simultaneous multi-frequency observing performance at 22 and 43 GHz of the 21-m shaped-Cassegrain radio telescopes of the Korean VLBI Network (KVN). KVN is the first millimeter-dedicated VLBI network in Korea having a maximum baseline lengt h of 480 km. It currently operates at 22 and 43 GHz and planed to operate in four frequency bands, 22, 43, 86, and 129 GHz. The unique quasioptics of KVN enable simultaneous multi-frequency observations based on efficient beam filtering and accuarate antenna-beam alignment at 22 and 43 GHz. We found that the offset of the beams is within <5 arcseconds over all pointing directions of antenna. The dual polarization, cooled HEMT receivers at 22 and 43 GHz result in receiver noise temperatures less than 40 K at 21.25-23.25 GHz and 80 K at 42.11-44.11 GHz. The pointing accuracies have been measured to be 3 arcseconds in azimuth and elevation for all antennas. The measured aperture efficiencies are 65%(K)/67%(Q), 62%(K)/59%(Q), and 66%(K)/60%(Q) for the three KVN antennas, KVNYS, KVNUS, and KVNTN, respectively. The main-beam efficiencies are measured to be 50%(K)/52%(Q), 48%(K)/50%(Q), and 50%(K)/47%(Q) for KVNYS, KVNUS, and KVNTN, respectively. The estimated Moon efficiencies are 77%(K)/90%(Q), 74%(K)/79%(Q), and 80%(K)/86%(Q) for KVNYS, KVNUS, KVNTN, respectively. The elevation dependence of the aperture efficiencies is quite flat for elevations > 20 degrees.
A large-N correlator that makes use of Field Programmable Gate Arrays and Graphics Processing Units has been deployed as the digital signal processing system for the Long Wavelength Array station at Owens Valley Radio Observatory (LWA-OV), to enable the Large Aperture Experiment to Detect the Dark Ages (LEDA). The system samples a ~100MHz baseband and processes signals from 512 antennas (256 dual polarization) over a ~58MHz instantaneous sub-band, achieving 16.8Tops/s and 0.236 Tbit/s throughput in a 9kW envelope and single rack footprint. The output data rate is 260MB/s for 9 second time averaging of cross-power and 1 second averaging of total-power data. At deployment, the LWA-OV correlator was the largest in production in terms of N and is the third largest in terms of complex multiply accumulations, after the Very Large Array and Atacama Large Millimeter Array. The correlators comparatively fast development time and low cost establish a practical foundation for the scalability of a modular, heterogeneous, computing architecture.
302 - S. Sawada-Satoh 2013
The KVN+VERA array is a joint VLBI project of seven VLBI stations spread throughout Korea and Japan. Since the first fringe detection in 2008, the early phase observations of the KVN+VERA have been carried out every several months. Currently, two obs erving bands of 22 and 43 GHz are available. We are aiming for early realization of science observations with the 1-Gbps recording system from 2012.
We present our work towards using the Korean VLBI (Very Long Baseline Interferometer) Network (KVN) and VLBI Exploration of Radio Astronomy (VERA) arrays combined into the KVN and VERA Array (KaVA) for observations of radio pulsars at high frequencie s ($simeq$22-GHz). Pulsar astronomy is generally focused at frequencies approximately 0.3 to several GHz and pulsars are usually discovered and monitored with large, single-dish, radio telescopes. For most pulsars, reduced radio flux is expected at high frequencies due to their steep spectrum, but there are exceptions where high frequency observations can be useful. Moreover, some pulsars are observable at high frequencies only, such as those close to the Galactic Center. The discoveries of a radio-bright magnetar and a few dozen extended Chandra sources within 15 arc-minute of the Galactic Center provide strong motivations to make use of the KaVA frequency band for searching pulsars in this region. Here, we describe the science targets and report progresses made from the KVN test observations for known pulsars. We then discuss why KaVA pulsar observations are compelling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا