ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the dp-elastic scattering at 2 GeV

28   0   0.0 ( 0 )
 نشر من قبل Arkadiy Terekhin
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The results on the measurements of dp-elastic scattering cross section at the energy 2 GeV at Internal Target Station at the Nuclotron JINR are reported. The data were obtained for the angular range of 70-107 deg. in the c.m.s. by using CH2 and C targets. The results are compared with the existing data and with the theoretical calculations based on the relativistic multiple scattering theory.

قيم البحث

اقرأ أيضاً

The vector Ay and tensor analyzing powers Ayy and Axx for dp- elastic scattering were measured at Td = 880 MeV over the c.m. angular range from 60 to 140 degrees at the JINR Nuclotron. The data are compared with predictions of different theoretical m odels based on the use of nucleon-nucleon forces only. The observed discrepancies of the measured analyzing powers from the calculations require the consideration of additional mechanisms.
68 - N. B. Ladygina 2009
The deuteron-proton elastic scattering is studied in the multiple scattering expansion formalism. The contributions of the one-nucleon-exchange, single- and double scattering are taken into account. The Love and Franey parameterization of the nucleon -nucleon $t$-matrix is used, that gives an opportunity to include the off-energy-shell effects into calculations. Differential cross sections are considered at four energies, $T_d=390, 500, 880, 1200$ MeV. The obtained results are compared with the experimental data.
Systematic differences in the the protons charge radius, as determined by ordinary atoms and muonic atoms, have caused a resurgence of interest in elastic lepton scattering measurements. The protons charge radius, defined as the slope of the charge f orm factor at Q$^2$=0, does not depend on the probe. Any difference in the apparent size of the proton, when determined from ordinary versus muonic hydrogen, could point to new physics or need for the higher order corrections. While recent measurements seem to now be in agreement, there is to date no high precision elastic scattering data with both electrons and positrons. A high precision proton radius measurement could be performed in Hall B at Jefferson Lab with a positron beam and the calorimeter based setup of the PRad experiment. This measurement could also be extended to deuterons where a similar discrepancy has been observed between the muonic and electronic determination of deuteron charge radius. A new, high precision measurement with positrons, when viewed alongside electron scattering measurements and the forthcoming MUSE muon scattering measurement, could help provide new insights into the origins of the proton radius puzzle, and also provide new experimental constraints on radiative correction calculations.
In this work, angular distribution measurements for the elastic channel were performed for the 9Be+12C reaction at the energies ELab=13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the do uble folding S~ao Paulo potential. The experimental elastic scattering angular distributions were well described by the optical potential at forward angles for all measured energies. However, for the three highest energies, an enhancement was observed for intermediate and backward angles. This can be explained by the elastic transfer mechanism. Keywords: 9Be+12C, Elastic Scattering, S~aoo Paulo Potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا