ﻻ يوجد ملخص باللغة العربية
Device-independent (DI) quantum communication will require a loophole-free violation of Bell inequalities. In typical scenarios where line-of-sight between the communicating parties is not available, it is convenient to use energy-time entangled photons due to intrinsic robustness while propagating over optical fibers. Here we show an energy-time Clauser-Horne-Shimony-Holt Bell inequality violation with two parties separated by 3.7 km over the deployed optical fiber network belonging to the University of Concepcion in Chile. Remarkably, this is the first Bell violation with spatially separated parties that is free of the post-selection loophole, which affected all previous in-field long-distance energy-time experiments. Our work takes a further step towards a fiber-based loophole-free Bell test, which is highly desired for secure quantum communication due to the widespread existing telecommunication infrastructure.
We discuss the problem of finding the most favorable conditions for closing the detection loophole in a test of local realism with a Bell inequality. For a generic non-maximally entangled two-qubit state and two alternative measurement bases we apply
We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne detection. A non-gaussian entangled state is generated from a two-mode squeezed vacuum by subtracting a single photon from each mode, using beamsplitte
A recent experiment yielding results in agreement with quantum theory and violating Bell inequalities was interpreted [Nature 526 (29 Octobert 2015) p. 682 and p. 649] as ruling out any local realistic theory of nature. But quantum theory itself is b
So far, all experimental tests of Bell inequalities which must be satisfied by all local realistic hidden-variable theories and are violated by quantum mechanical predictions have left at least one loophole open. We propose a feasible setup allowing
Recent experiments have reached detection efficiencies sufficient to close the detection loophole with photons. Both experiments ran multiple successive trials in fixed measurement configurations, rather than randomly re-setting the measurement confi