ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU

286   0   0.0 ( 0 )
 نشر من قبل Miho Janvier
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interplanetary Coronal Mass Ejections are the manifestation of solar transient eruptions, which can significantly modify the plasma and magnetic conditions in the heliosphere. They are often preceded by a shock, and a magnetic flux rope is detected in situ in a third to half of them. The main aim of this study is to obtain the best quantitative shape for the flux rope axis and for the shock surface from in situ data obtained during spacecraft crossings of these structures. We first compare the orientation of the flux ropes axes and shock normals obtained from independent data analyses of the same events, observed in situ at 1AU from the Sun. Then, we carry out an original statistical analysis of axes/shock normals by deriving the statistical distributions of their orientations. We fit the observed distributions using the distributions derived from several synthetic models describing these shapes. We show that the distributions of axis/shock orientations are very sensitive to their respective shape. One classical model, used to analyze interplanetary imager data, is incompatible with the in situ data. Two other models are introduced, for which the results for axis and shock normals lead to very similar shapes; the fact that the data for MCs and shocks are independent strengthen this result. The model which best fit all the data sets has an ellipsoidal shape with similar aspect ratio values for all the data sets. These derived shapes for the flux rope axis and shock surface have several potential applications. First, these shapes can be used to construct a consistent ICME model. Second, these generic shapes can be used to develop a quantitative model to analyze imager data, as well as constraining the output of numerical simulations of ICMEs. Finally, they will have implications for space weather forecasting, in particular for forecasting the time arrival of ICMEs at the Earth.

قيم البحث

اقرأ أيضاً

Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar physics, and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. So far it is unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in-situ measurements of magnetic clouds (MCs), the large-scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity-modified uniform-twist force-free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably over-estimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about $0.6frac{l}{R}$ radians, where $frac{l}{R}$ is the aspect ratio of a MFR, with a cutoff at about $12pi$ radians AU$^{-1}$, (2) most of them are significantly larger than $2.5pi$ radians but well bounded by $2frac{l}{R}$ radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs, but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
Interplanetary coronal mass ejections (ICMEs) often consist of a shock wave, sheath region, and ejecta region. The ejecta regions are divided into two broad classes: magnetic clouds (MC) that exhibit the characteristics of magnetic flux ropes and non -magnetic clouds (NMC) that do not. As CMEs result from eruption of magnetic flux ropes, it is important to answer why NMCs do not have the flux rope features. One claims that NMCs lose their original flux rope features due to the interactions between ICMEs or ICMEs and other large scale structures during their transit in the heliosphere. The other attributes this phenomenon to the geometric selection effect, i.e., when an ICME has its nose (flank, including leg and non-leg flanks) pass through the observing spacecraft, the MC (NMC) features will be detected along the spacecraft trajectory within the ejecta. In this Letter, we examine which explanation is more reasonable through the geometric properties of ICMEs. If the selection effect leads to different ejecta types, MCs should have narrower sheath region compared to NMCs from the statistical point of view, which is confirmed by our statistics. Besides, we find that NMCs have the similar size in solar cycles 23 and 24, and NMCs are smaller than MCs in cycle 23 but larger than MCs in cycle 24. This suggests that most NMCs have their leg flank pass through the spacecraft. Our geometric analyses support that all ICMEs should have a magnetic flux rope structure near 1 AU.
This study aims to provide a reference to different magnetic field models and reconstruction methods for interplanetary coronal mass ejections (ICMEs). In order to understand the differences in the outputs of those models and codes, we analyze 59 eve nts from the Coordinated Data Analysis Workshop (CDAW) list, using four different magnetic field models and reconstruction techniques; force-free fitting (Goldstein,1983,Burlaga,1988,Lepping et al.,1990), magnetostatic reconstruction using a numerical solution to the Grad-Shafranov equation (Hu and Sonnerup, 2001), fitting to a self-similarly expanding cylindrical configuration (Marubashi and Lepping, 2007) and elliptical, non-force free fitting (Hidalgo,2003). The resulting parameters of the reconstructions for the 59 events are compared statistically, as well as in selected case studies. The ability of a method to fit or reconstruct an event is found to vary greatly: the Grad-Shafranov reconstruction is successful for most magnetic clouds (MCs) but for less than 10% of the non-MC ICMEs; the other three methods provide a successful fit for more than 65% of all events. The differences between the reconstruction and fitting methods are discussed, and suggestions are proposed as to how to reduce them. We find that the magnitude of the axial field is relatively consistent across models but not the orientation of the axis of the ejecta. We also find that there are a few cases for which different signs of the magnetic helicity are found for the same event when we do not fix the boundaries, illustrating that this simplest of parameters is not necessarily always well constrained by fitting and reconstruction models. Finally, we look at three unique cases in depth to provide a comprehensive idea of the different aspects of how the fitting and reconstruction codes work.
152 - N. Gopalswamy , H. Xie , P. Makela 2009
We report on the radio-emission characteristics of 222 interplanetary (IP) shocks. A surprisingly large fraction of the IP shocks (~34%) is radio quiet (i.e., the shocks lacked type II radio bursts). The CMEs associated with the RQ shocks are general ly slow (average speed ~535 km/s) and only ~40% of the CMEs were halos. The corresponding numbers for CMEs associated with radio loud (RL) shocks are 1237 km/s and 72%, respectively. The RQ shocks are also accompanied by lower peak soft X-ray flux. CMEs associated with RQ (RL) shocks are generally accelerating (decelerating). The kinematics of CMEs associated with the km type II bursts is similar to those of RQ shocks, except that the former are slightly more energetic. Comparison of the shock The RQ shocks seem to be mostly subcritical and quasi-perpendicular. The radio-quietness is predominant in the rise phase and decreases through the maximum and declining phases of solar cycle 23. The solar sources of the shock-driving CMEs follow the sunspot butterfly diagram, consistent with the higher-energy requirement for driving shocks.
Large magnetic structures are launched away from the Sun during solar eruptions. They are observed as (interplanetary) coronal mass ejections (ICMEs or CMEs) with coronal and heliospheric imagers. A fraction of them are observed insitu as magnetic cl ouds (MCs). Fitting these structures properly with a model requires a better understanding of their evolution. In situ measurements are done locally when the spacecraft trajectory crosses the magnetic configuration. These observations are taken for different elements of plasma and at different times, and are therefore biased by the expansion of the magnetic configuration. This aging effect leads to stronger magnetic fields measured at the front than at the rear of MCs, an asymmetry often present in MC data. However, can the observed asymmetry be explained quantitatively only from the expansion? Based on self-similar expansion, we derive a method to estimate the expansion rate from observed plasma velocity. We next correct for the aging effect both the observed magnetic field and the spatial coordinate along the spacecraft trajectory. This provides corrected data as if the MC internal structure was observed at the same time. We apply the method to 90 best observed MCs near Earth (1995-2012). The aging effect is the main source of the observed magnetic asymmetry only for 28% of MCs. After correcting the aging effect, the asymmetry is almost symmetrically distributed between MCs with a stronger magnetic field at the front and those at the rear of MCs. The proposed method can efficiently remove the aging bias within insitu data of MCs, and more generally of ICMEs. This allows one to analyse the data with a spatial coordinate, such as in models or remote sensing observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا