ﻻ يوجد ملخص باللغة العربية
We pursue the idea of adding the naive $mu N$ term, where $mu$ is the quark chemical potential and $N$ is the conserved quark number, to the lattice QCD action. While computations of higher order susceptibilities, required for estimating the location of the QCD critical point, need a lot fewer number of quark propagators at any order as a result, it has its problem. We discuss a solution, and examine if it works.
We present two new suggestions for density of states (DoS) approaches to finite density lattice QCD. Both proposals are based on the recently developed and successfully tested DoS FFA technique, which is a DoS approach for bosonic systems with a comp
We study the phase diagram of QCD at finite isospin density using two flavors of staggered quarks. We investigate the low temperature region of the phase diagram where we find a pion condensation phase at high chemical potential. We started a basic a
The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from la
We investigate chemical-potential (mu) dependence of static-quark free energies in both the real and imaginary mu regions, performing lattice QCD simulations at imaginary mu and extrapolating the results to the real mu region with analytic continuati
We discuss two new DoS approaches for finite density lattice QCD. The paper extends a recent presentation of the new techniques based on Wilson fermions, while here we now discuss and test the case of finite density QCD with staggered fermions. The f