ﻻ يوجد ملخص باللغة العربية
The main goal of this work is to construct and study a reasonable compactification of the strata of the moduli space of Abelian differentials. This allows us to compute the Kodaira dimension of some strata of the moduli space of Abelian differentials. The main ingredients to study the compactifications of the strata are a version of the plumbing cylinder construction for differential forms and an extension of the parity of the connected components of the strata to the differentials on curves of compact type. We study in detail the compactifications of the hyperelliptic minimal strata and of the odd minimal stratum in genus three.
We generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive characteristic $p>0$ and generalize Langers method to smooth Deligne-Mumford stack
Motivated by the S-duality conjecture of Vafa-Witten, Tanaka-Thomas have developed a theory of Vafa-Witten invariants for projective surfaces using the moduli space of Higgs sheaves. Their definition and calculation prove the S-duality prediction of
We investigate Siegel modular varieties in positive characteristic with Iwahori level structure. On these spaces, we have the Newton stratification, and the Kottwitz-Rapoport stratification; one would like to understand how these stratifications are
In this paper, we compute the motive of the character variety of representations of the fundamental group of the complement of an arbitrary torus knot into $SL_4(k)$, for any algebraically closed field $k$. For that purpose, we introduce a stratifica
We generalize the construction of a moduli space of semistable pairs parametrizing isomorphism classes of morphisms from a fixed coherent sheaf to any sheaf with fixed Hilbert polynomial under a notion of stability to the case of projective Deligne-M