ﻻ يوجد ملخص باللغة العربية
Context: A number of pulsating stars with rotational splittings have been observed thanks to the CoRoT and Kepler missions. This is particularly true of evolved (sub-giant and giant) stars, and has led various groups to investigate their rotation profiles via different methods. Aims: We would like to set up some criteria which will help us to know whether a decreasing rotation profile, or one which satisfies Rayleighs stability criterion, is compatible with a set of observed rotational splittings for a given reference model. Methods: We derive inequalities on the rotational splittings using a reformulated version of the equation which relates the splittings to the rotation profile and kernels. Results: These inequalities are tested out on some simple examples. The first examples show how they are able to reveal when a rotation profile is increasing somewhere or inconsistent with Rayleighs criterion in a main sequence star, depending on the profile and the $ell$ values of the splittings. The next example illustrates how a slight mismatch between an observed evolved star and a reference model can lead to erroneous conclusions about the rotation profile. We also show how frequency differences between the star and the model, which should normally reveal this mismatch, can be masked by frequency corrections for near-surface effects.
We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the $
The solar rotation profile is well constrained down to about 0.25 R thanks to the study of acoustic modes. Since the radius of the inner turning point of a resonant acoustic mode is inversely proportional to the ratio of its frequency to its degree,
We study the effects of rotation on the growth and saturation of the double-diffusive fingering (thermohaline) instability at low Prandtl number. Using direct numerical simulations, we estimate the compositional transport rates as a function of the r
The observations of global stellar oscillations of post main-sequence stars by space-based photometry missions allowed to directly determine their internal rotation. These constraints have pointed towards the existence of angular momentum transport p
Observations of young open clusters show a bimodal distribution of stellar rotation. Sun-like stars in those clusters group into two main sub-populations of fast and slow rotators. Beyond an age of about 500 Myrs, the two populations converge towards