ترغب بنشر مسار تعليمي؟ اضغط هنا

A dusty, normal galaxy in the epoch of reionization

127   0   0.0 ( 0 )
 نشر من قبل Darach Watson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Darach Watson




اسأل ChatGPT حول البحث

Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts $z > 7$, have been found in large numbers with extremely deep restframe-UV imaging. But it has proved difficult for existing spectrographs to characterise them in the UV. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at $z = 3.25$, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be $z = 7.5pm0.2$ from a spectroscopic detection of the Ly{alpha} break. A1689-zD1 is representative of the star-forming population during reionisation, with a total star-formation rate of about 12M$_odot$ yr$^{-1}$. The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at $z > 7$, in spite of the very short time since they first appeared.



قيم البحث

اقرأ أيضاً

We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, ef ficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at $z>10$ (lookback time $lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations ($0lesssim zlesssim10$). The significant drop in luminosity density of currently detectable galaxies beyond $zsim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $tau = 0.056^{+0.007}_{-0.010}$, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at $z=7.84^{+0.65}_{-0.98}$. In addition, our model naturally produces smoothly rising star formation histories for galaxies with $Llesssim L_*$ in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at $z>10$ we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope ($alphasim-3.5$ at $zsim16$). Finally, we construct forecasts for surveys with JWST~and WFIRST and predict that galaxies out to $zsim14$ will be observed. Galaxies at $z>15$ will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.
Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts ($z>7.5$; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at $z>7.5$. We detected the Lyman-$alpha$ emission line at $sim 10504$ {AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescopes slit-less grism spectrograph, implying a source redshift of $z = 7.640 pm 0.001$. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 ($z = 0.545$), with an estimated intrinsic luminosity of $M_{AB} = -19.6 pm 0.2$ mag and a stellar mass of $M_{star} = 3.0^{+1.5}_{-0.8} times 10^8$ solar masses. Both are an order of magnitude lower than the four other Lyman-$alpha$ emitters currently known at $z > 7.5$, making it probably the most distant representative source of reionization found to date.
We present observations of a luminous galaxy at redshift z=6.573 --- the end of the reioinization epoch --- which has been spectroscopically confirmed twice. The first spectroscopic confirmation comes from slitless HST ACS grism spectra from the PEAR S survey (Probing Evolution And Reionization Spectroscopically), which show a dramatic continuum break in the spectrum at restframe 1216 A wavelength. The second confirmation is done with Keck + DEIMOS. The continuum is not clearly detected with ground-based spectra, but high wavelength resolution enables the Lyman alpha emission line profile to be determined. We compare the line profile to composite line profiles at redshift z=4.5. The Lyman alpha line profile shows no signature of a damping wing attenuation, confirming that the intergalactic gas is ionized at redshift z=6.57. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms, even at redshifts where Lyman alpha is too attenuated by the neutral IGM to be detectable using traditional spectroscopy from the ground.
We present the results of CANDELSz7, an ESO large program aimed at confirming spectroscopically a homogeneous sample of z~6 and z~7 star forming galaxies. The candidates were selected in the GOODS-South, UDS and COSMOS fields using the official CANDE LS catalogs based on H160-band detections. Standard color criteria, which were tailored depending on the ancillary multi-wavelength data available for each field, were applied to select more than 160 candidate galaxies at z~6 and z~7. Deep medium resolution FORS2 spectroscopic observations were then conducted with integration times ranging from 12 to 20 hours, to reach a Lyalpha flux limit of approximately 1-3x 10-18 erg/s/cm^2 at 3sigma. For about 40% of the galaxies we could determine a spectroscopic redshift, mainly through the detection of a single emission line that we interpret as Lyalpha emission, or for some of the brightest objects (H160< 25.5) from the presence of faint continuum and sharp drop that we interpret as a Lyman break. In this paper we present the redshifts and main properties of 65 newly confirmed high redshift galaxies. Adding previous proprietary and archival data we assemble a sample of ~260 galaxies that we use to explore the evolution of the Lyalpha fraction in Lyman break galaxies and the change in the shape of the emission line between z~6 and z~7. We also discuss the accuracy of the CANDELS photometric redshifts in this redshift range.
Nebular emission lines associated with galactic HII regions carry information about both physical properties of the ionised gas and the source of ionising photons as well as providing the opportunity of measuring accurate redshifts and thus distances once a cosmological model is assumed. While nebular line emission has been extensively studied at lower redshift there are currently only few constraints within the epoch of reionisation (EoR, $z>6$), chiefly due to the lack of sensitive near-IR spectrographs. However, this will soon change with the arrival of the Webb Telescope providing sensitive near-IR spectroscopy covering the rest-frame UV and optical emission of galaxies in the EoR. In anticipation of Webb we combine the large cosmological hydrodynamical simulation Bluetides with photoionisation modelling to predict the nebular emission line properties of galaxies at $z=8to 13$. We find good agreement with the, albeit limited, existing direct and indirect observational constraints on equivalent widths though poorer agreement with luminosity function constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا