ترغب بنشر مسار تعليمي؟ اضغط هنا

Coalitional Permutation Manipulations in the Gale-Shapley Algorithm

135   0   0.0 ( 0 )
 نشر من قبل Weiran Shen
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider permutation manipulations by any subset of women in the Gale-Shapley algorithm. This paper is motivated by the college admissions process in China. Our results also answer Gusfield and Irvings open problem on what can be achieved by permutation manipulations. We present an efficient algorithm to find a strategy profile such that the induced matching is stable and Pareto-optimal while the strategy profile itself is inconspicuous. Surprisingly, we show that such a strategy profile actually forms a Nash equilibrium of the manipulation game. We also show that a strong Nash equilibrium or a super-strong Nash equilibrium does not always exist in general and it is NP-hard to check the existence of these equilibria. We consider an alternative notion of strong Nash equilibria and super-strong Nash equilibrium. Under such notions, we characterize the super-strong Nash equilibrium by Pareto-optimal strategy profiles. In the end, we show that it is NP-complete to find a manipulation that is strictly better for all members of the coalition. This result demonstrates a sharp contrast between weakly better-off outcomes and strictly better-off outcomes.



قيم البحث

اقرأ أيضاً

This paper concerns the analysis of the Shapley value in matching games. Matching games constitute a fundamental class of cooperative games which help understand and model auctions and assignments. In a matching game, the value of a coalition of vert ices is the weight of the maximum size matching in the subgraph induced by the coalition. The Shapley value is one of the most important solution concepts in cooperative game theory. After establishing some general insights, we show that the Shapley value of matching games can be computed in polynomial time for some special cases: graphs with maximum degree two, and graphs that have a small modular decomposition into cliques or cocliques (complete k-partite graphs are a notable special case of this). The latter result extends to various other well-known classes of graph-based cooperative games. We continue by showing that computing the Shapley value of unweighted matching games is #P-complete in general. Finally, a fully polynomial-time randomized approximation scheme (FPRAS) is presented. This FPRAS can be considered the best positive result conceivable, in view of the #P-completeness result.
A key question in cooperative game theory is that of coalitional stability, usually captured by the notion of the emph{core}--the set of outcomes such that no subgroup of players has an incentive to deviate. However, some coalitional games have empty cores, and any outcome in such a game is unstable. In this paper, we investigate the possibility of stabilizing a coalitional game by using external payments. We consider a scenario where an external party, which is interested in having the players work together, offers a supplemental payment to the grand coalition (or, more generally, a particular coalition structure). This payment is conditional on players not deviating from their coalition(s). The sum of this payment plus the actual gains of the coalition(s) may then be divided among the agents so as to promote stability. We define the emph{cost of stability (CoS)} as the minimal external payment that stabilizes the game. We provide general bounds on the cost of stability in several classes of games, and explore its algorithmic properties. To develop a better intuition for the concepts we introduce, we provide a detailed algorithmic study of the cost of stability in weighted voting games, a simple but expressive class of games which can model decision-making in political bodies, and cooperation in multiagent settings. Finally, we extend our model and results to games with coalition structures.
The attribution problem, that is the problem of attributing a models prediction to its base features, is well-studied. We extend the notion of attribution to also apply to feature interactions. The Shapley value is a commonly used method to attribu te a models prediction to its base features. We propose a generalization of the Shapley value called Shapley-Taylor index that attributes the models prediction to interactions of subsets of features up to some size k. The method is analogous to how the truncated Taylor Series decomposes the function value at a certain point using its derivatives at a different point. In fact, we show that the Shapley Taylor index is equal to the Taylor Series of the multilinear extension of the set-theoretic behavior of the model. We axiomatize this method using the standard Shapley axioms -- linearity, dummy, symmetry and efficiency -- and an additional axiom that we call the interaction distribution axiom. This new axiom explicitly characterizes how interactions are distributed for a class of functions that model pure interaction. We contrast the Shapley-Taylor index against the previously proposed Shapley Interaction index (cf. [9]) from the cooperative game theory literature. We also apply the Shapley Taylor index to three models and identify interesting qualitative insights.
Two simple and attractive mechanisms for the fair division of indivisible goods in an online setting are LIKE and BALANCED LIKE. We study some fundamental computational problems concerning the outcomes of these mechanisms. In particular, we consider what expected outcomes are possible, what outcomes are necessary, and how to compute their exact outcomes. In general, we show that such questions are more tractable to compute for LIKE than for BALANCED LIKE. As LIKE is strategy-proof but BALANCED LIKE is not, we also consider the computational problem of how, with BALANCED LIKE, an agent can compute a strategic bid to improve their outcome. We prove that this problem is intractable in general.
The Borda voting rule is a positional scoring rule for $z$ candidates such that in each vote, the first candidate receives $z-1$ points, the second $z-2$ points and so on. The winner in the Borda rule is the candidate with highest total score. We stu dy the manipulation problem of the Borda rule in a setting with two non-manipulators while one of the non-manipulators vote is weighted. We demonstrate a sharp contrast on computational complexity depending on the weight of the non-manipulator: the problem is NP-hard when the weight is larger than $1$ while there exists an efficient algorithm to find a manipulation when the weight is at most $1$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا