ﻻ يوجد ملخص باللغة العربية
We present sCOLA -- an extension of the N-body COmoving Lagrangian Acceleration (COLA) method to the spatial domain. Similar to the original temporal-domain COLA, sCOLA is an N-body method for solving for large-scale structure in a frame that is comoving with observers following trajectories calculated in Lagrangian Perturbation Theory. Incorporating the sCOLA method in an N-body code allows one to gain computational speed by capturing the gravitational potential from the far field using perturbative techniques, while letting the N-body code solve only for the near field. The far and near fields are completely decoupled, effectively localizing gravity for the N-body side of the code. Thus, running an N-body code for a small simulation volume using sCOLA can reproduce the results of a standard N-body run for the same small volume embedded inside a much larger simulation. We demonstrate that sCOLA can be safely combined with the original temporal-domain COLA. sCOLA can be used as a method for performing zoom-in simulations. It also allows N-body codes to be made embarrassingly parallel, thus allowing for efficiently tiling a volume of interest using grid computing. Moreover, sCOLA can be useful for cheaply generating large ensembles of accurate mock halo catalogs required to study galaxy clustering. Surveys that will benefit the most are ones with large aspect ratios, such as pencil-beam surveys, where sCOLA can easily capture the effects of large-scale transverse modes without the need to substantially increase the simulated volume. As an illustration of the method, we present proof-of-concept zoom-in simulations using a freely available sCOLA-based N-body code.
The growth rate and expansion history of the Universe can be measured from large galaxy redshift surveys using the Alcock-Paczynski effect. We validate the Redshift Space Distortion models used in the final analysis of the Sloan Digital Sky Survey (S
We develop a series of N-body data challenges, functional to the final analysis of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16) galaxy sample. The challenges are primarily based on high-fidelity catalogs constru
Cosmological growth can be measured in the redshift space clustering of galaxies targeted by spectroscopic surveys. Accurate prediction of clustering of galaxies will require understanding galaxy physics which is a very hard and highly non-linear pro
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first
This work discusses the main analogies and differences between the deterministic approach underlying most cosmological N-body simulations and the probabilistic interpretation of the problem that is often considered in mathematics and statistical mech