ﻻ يوجد ملخص باللغة العربية
We derive a systematic high-frequency expansion for the effective Hamiltonian and the micromotion operator of periodically driven quantum systems. Our approach is based on the block diagonalization of the quasienergy operator in the extended Floquet Hilbert space by means of degenerate perturbation theory. The final results are equivalent to those obtained within a different approach [Phys. Rev. A {bf 68}, 013820 (2003), Phys. Rev. X {bf 4}, 031027 (2014)] and can also be related to the Floquet-Magnus expansion [J. Phys. A {bf 34}, 3379 (2000)]. We discuss that the dependence on the driving phase, which plagues the latter, can lead to artifactual symmetry breaking. The high-frequency approach is illustrated using the example of a periodically driven Hubbard model. Moreover, we discuss the nature of the approximation and its limitations for systems of many interacting particles.
Time periodic forcing in the form of coherent radiation is a standard tool for the coherent manipulation of small quantum systems like single atoms. In the last years, periodic driving has more and more also been considered as a means for the coheren
Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed f
The concept of Floquet engineering is to subject a quantum system to time-periodic driving in such a way that it acquires interesting novel properties. It has been employed, for instance, for the realization of artificial magnetic fluxes in optical l
Quantum systems can show qualitatively new forms of behavior when they are driven by fast time-periodic modulations. In the limit of large driving frequency, the long-time dynamics of such systems can often be described by a time-independent effectiv
Floquet engineering, modulating quantum systems in a time periodic way, lies at the central part for realizing novel topological dynamical states. Thanks to the Floquet engineering, various new realms on experimentally simulating topological material