ترغب بنشر مسار تعليمي؟ اضغط هنا

From Diversity to Dichotomy, and Quenching: Milky-Way-Like and Massive-Galaxy Progenitors at 0.5<z<3.0

158   0   0.0 ( 0 )
 نشر من قبل Takahiro Morishita
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the HST/WFC3 and ACS multi-band imaging data taken in CANDELS and 3D-HST, we study the general properties and the diversity of the progenitors of the Milky Way (MWs) and local massive galaxy (MGs) at 0.5 < z < 3.0, based on a constant cumulative number density analysis. After careful data reduction and stacking analysis, we conduct a radially resolved pixel SED fitting to obtain the radial distributions of the stellar mass and rest-frame colors. The stellar mass of MWs increases in self-similar way, irrespective of the radial distance, while that of MGs grows in inside-out way where they obtain ~ 75% of the total mass at outer (> 2.5 kpc) radius since z ~ 2. Although the radial mass profiles evolve in distinct ways, the formation and quenching of the central dense region (or bulge) ahead of the outer disk formation are found to be common for both systems. The sudden reddening of bulge at z ~ 1.6 and z ~ 2.4 for MWs and MGs, respectively, suggests the formation of bulge and would give a clue to the different gas accretion histories and quenching. A new approach to evaluate the morphological diversity is conducted by using the average surface density profile and its dispersion. The variety of the radial mass profiles for MGs peaks at higher redshift (z > 2.8), and then rapidly converges to more uniform shape at z < 1.5, while that for MWs remains in the outer region over the redshift. Compared with the observed star formation rates and color profiles, the evolution of variety is consistently explained by the star formation activities.



قيم البحث

اقرأ أيضاً

We investigate the relationship between the black hole accretion rate (BHAR) and star-formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 - 2.5. We source galaxies from the Ks-band selected ZFOURGE survey, which includes multi-wavelenth data spanning 0.3 - 160um. We use decomposition software to split the observed SEDs of our galaxies into their active galactic nuclei (AGN) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison to BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find as the progenit- ors evolve, their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star-formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).
144 - Ekta A. Shah 2020
Galaxy interactions and mergers are thought to play an important role in the evolution of galaxies. Studies in the nearby universe show a higher AGN fraction in interacting and merging galaxies than their isolated counterparts, indicating that such i nteractions are important contributors to black hole growth. To investigate the evolution of this role at higher redshifts, we have compiled the largest known sample of major spectroscopic galaxy pairs (2381 with $Delta V <5000$ km s$^{-1}$) at $0.5<z<3.0$ from observations in the COSMOS and CANDELS surveys. We identify X-ray and IR AGN among this kinematic pair sample, a visually identified sample of mergers and interactions, and a mass-, redshift-, and environment-matched control sample for each in order to calculate AGN fractions and the level of AGN enhancement as a function of relative velocity, redshift, and X-ray luminosity. While we see a slight increase in AGN fraction with decreasing projected separation, overall, we find no significant enhancement relative to the control sample at any separation. In the closest projected separation bin ($<25$ kpc, $Delta V <1000$ km s$^{-1}$), we find enhancements of a factor of 0.94$^{+0.21}_{-0.16}$ and 1.00$^{+0.58}_{-0.31}$ for X-ray and IR-selected AGN, respectively. While we conclude that galaxy interactions do not significantly enhance AGN activity on average over $0.5<z<3.0$ at these separations, given the errors and the small sample size at the closest projected separations, our results would be consistent with the presence of low-level AGN enhancement.
134 - Casey Papovich 2014
Galaxies with stellar masses near M* contain the majority of stellar mass in the universe, and are therefore of special interest in the study of galaxy evolution. The Milky Way (MW) and Andromeda (M31) have present day stellar masses near M*, at 5x10 ^10 Msol (MW-mass) and 10^11 Msol (M31-mass). We study the typical progenitors of these galaxies using ZFOURGE, a deep medium-band near-IR imaging survey, which is sensitive to the progenitors of these galaxies out to z~3. We use abundance-matching techniques to identify the main progenitors of these galaxies at higher redshifts. We measure the evolution in the stellar mass, rest-frame colors, morphologies, far-IR luminosities, and star-formation rates combining our deep multiwavelength imaging with near-IR HST imaging from CANDELS, and far-IR imaging from GOODS-H and CANDELS-H. The typical MW-mass and M31-mass progenitors passed through the same evolution stages, evolving from blue, star-forming disk galaxies at the earliest stages, to redder dust-obscured IR-luminous galaxies in intermediate stages, and to red, more quiescent galaxies at their latest stages. The progenitors of the MW-mass galaxies reached each evolutionary stage at later times (lower redshifts) and with stellar masses that are a factor of 2-3 lower than the progenitors of the M31-mass galaxies. The process driving this evolution, including the suppression of star-formation in present-day M* galaxies requires an evolving stellar-mass/halo-mass ratio and/or evolving halo-mass threshold for quiescent galaxies. The effective size and star-formation rates imply that the baryonic cold-gas fractions drop as galaxies evolve from high redshift to z~0 and are strongly anticorrelated with an increase in the Sersic index. Therefore, the growth of galaxy bulges in M* galaxies corresponds to a rapid decline in the galaxy gas fractions and/or a decrease in the star-formation efficiency.
Here we investigate the evolution of a Milky Way (MW) -like galaxy with the aim of predicting the properties of its progenitors all the way from $z sim 20$ to $z = 0$. We apply GAMESH (Graziani et al. 2015) to a high resolution N-Body simulation foll owing the formation of a MW-type halo and we investigate its properties at $z sim 0$ and its progenitors in $0 < z < 4$. Our model predicts the observed galaxy main sequence, the mass-metallicity and the fundamental plane of metallicity relations in $0 < z < 4$. It also reproduces the stellar mass evolution of candidate MW progenitors in $0 lesssim z lesssim 2.5$, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman $alpha$-cooling halos, at z > 6 the contribution of star forming mini-halos is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of mini-halos with old stellar populations, possibly Population~III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.
We study galactic star-formation activity as a function of environment and stellar mass over 0.5<z<2.0 using the FourStar Galaxy Evolution (ZFOURGE) survey. We estimate the galaxy environment using a Bayesian-motivated measure of the distance to the third nearest neighbor for galaxies to the stellar mass completeness of our survey, $log(M/M_odot)>9 (9.5)$ at z=1.3 (2.0). This method, when applied to a mock catalog with the photometric-redshift precision ($sigma_z / (1+z) lesssim 0.02$), recovers galaxies in low- and high-density environments accurately. We quantify the environmental quenching efficiency, and show that at z> 0.5 it depends on galaxy stellar mass, demonstrating that the effects of quenching related to (stellar) mass and environment are not separable. In high-density environments, the mass and environmental quenching efficiencies are comparable for massive galaxies ($log (M/M_odot)gtrsim$ 10.5) at all redshifts. For lower mass galaxies ($log (M/M)_odot) lesssim$ 10), the environmental quenching efficiency is very low at $zgtrsim$ 1.5, but increases rapidly with decreasing redshift. Environmental quenching can account for nearly all quiescent lower mass galaxies ($log(M/M_odot) sim$ 9-10), which appear primarily at $zlesssim$ 1.0. The morphologies of lower mass quiescent galaxies are inconsistent with those expected of recently quenched star-forming galaxies. Some environmental process must transform the morphologies on similar timescales as the environmental quenching itself. The evolution of the environmental quenching favors models that combine gas starvation (as galaxies become satellites) with gas exhaustion through star-formation and outflows (overconsumption), and additional processes such as galaxy interactions, tidal stripping and disk fading to account for the morphological differences between the quiescent and star-forming galaxy populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا