ﻻ يوجد ملخص باللغة العربية
MoTe2 is a rare transition-metal ditelluride having two kinds of layered polytypes, hexagonal structure with trigonal prismatic Mo coordination and monoclinic structure with octahedral Mo coordination. The monoclinic distortion in the latter is caused by anisotropic metal-metal bonding. In this work, we have examined the Nb doping effect on both polytypes of MoTe2 and clarified a structural phase diagram for Mo1-xNbxTe2 containing four kinds of polytypes. A rhombohedral polytype crystallizing in polar space group has been newly identified as a high-temperature metastable phase at slightly Nb-rich composition. Considering the results of thermoelectric measurements and the first principles calculations, the Nb ion seemingly acts as a hole dopant in the rigid band scheme. On the other hand, the significant interlayer contraction upon the Nb doping, associated with the Te p-p hybridization, is confirmed especially for the monoclinic phase, which implies a shift of the p-band energy level. The origin of the metal-metal bonding in the monoclinic structure is discussed in terms of the d electron counting and the Te p-p hybridization.
In this article we present a neutron diffraction in-situ study of the thermal evolution and high-temperature structure of layered cobaltites Y(Ba, Sr)Co2 O5+{delta}. Neutron thermodiffractograms and magnetic susceptibility measurements are reported i
Using muon spin spectroscopy we have found that, for both Na$_x$CoO$_2$ (0.6 $leq x leq$ 0.9) and 3- and 4-layer cobaltites, a common low temperature magnetic state (which in some cases is manifest as an incommensurate spin density wave) forms in the
The structural and electronic properties of twisted bilayer graphene are investigated from first principles and tight binding approach as a function of the twist angle (ranging from the first magic angle $theta=1.08^circ$ to $theta=3.89^circ$, with t
The theoretical studies on the electronic and lattice properties of the series of non-centrosymmetric superconductors ThTSi, where T = Co, Ni, Ir, and Pt are presented. The electronic band structure and crystal parameters were optimized within the de
We present a study of the electronic properties of Tl5Te3, BiTl9Te6 and SbTl9Te6 compounds by means of density functional theory based calculations. The optimized lattice constants of the compounds are in good agreement with the experimental data. Th