ترغب بنشر مسار تعليمي؟ اضغط هنا

First Taste of Hot Channel in Interplanetary Space

109   0   0.0 ( 0 )
 نشر من قبل Hongqiang Song
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hot channel (HC) is a high temperature ($sim$10 MK) structure in the inner corona revealed first by Atmospheric Imaging Assembly (AIA) on board textit{Solar Dynamics Observatory}. Eruption of HC is often associated with flare and coronal mass ejection. Previous studies suggest that HC is a good proxy of magnetic flux rope (MFR) in the inner corona, in addition to another well-known MFR candidate, the prominence-cavity structure that is with a normal coronal temperature ($sim$1-2 MK). In this paper, we report a high temperature structure (HTS, $sim$1.5 MK) contained in an interplanetary coronal mass ejection induced by an HC eruption. According to the observations of bidirectional electrons, high temperature and density, strong magnetic field, and its association with the shock, sheath, and plasma pile-up region, we suggest that the HTS is the interplanetary counterpart of the HC. The scale of the measured HTS is around 14 R$_odot$, and it maintained a much higher temperature than the background solar wind even at 1 AU. It is significantly different from the typical magnetic clouds (MCs), which usually have a much lower temperature. Our study suggests that the existence of a corotating interaction region ahead of the HC formed a magnetic container to inhibit the HC expansion and cooling down to a low temperature.



قيم البحث

اقرأ أيضاً

89 - S. Dalla , G. De Nolfo , A. Bruno 2020
Context. Solar Energetic Particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce Ground Level Enhancements (GLEs). The traditional approach to interpreting and modelling GLE observa tions assumes particle propagation only parallel to the magnetic field lines of interplanetary space, i.e. it is spatially 1D. Recent measurements by PAMELA have characterised SEP properties at 1 AU for the ~100 MeV-1 GeV range at high spectral resolution. Aims. We model the transport of GLE-energy solar protons through the Interplanetary Magnetic Field (IMF) using a 3D approach, to assess the effect of the Heliospheric Current Sheet (HCS) and drifts associated to the gradient and curvature of the Parker spiral. The latter are influenced by the IMF polarity. We derive 1 AU observables and compare the simulation results with data from PAMELA. Methods. We use a 3D test particle model including a HCS. Monoenergetic populations are studied first to obtain a qualitative picture of propagation patterns and numbers of crossings of the 1 AU sphere. Simulations for power law injection are used to derive intensity profiles and fluence spectra at 1 AU. A simulation for a specific event, GLE 71, is used to compare with PAMELA data. Results. Spatial patterns of 1 AU crossings and the average number of crossings are strongly influenced by 3D effects, with significant differences between periods of A+ and A- polarities. The decay time constant of 1 AU intensity profiles varies depending on the polarity and position of the observer, and it is not a simple function of the mean free path as in 1D models. Energy dependent leakage from the injection flux tube is particularly important for GLE energy particles, in many cases resulting in a roll-over in the fluence spectrum.
145 - C. Li , Y. Dai , J. -C. Vial 2013
An X3.4 solar flare and a fast halo coronal mass ejection (CME) occurred on 2006 December 13, accompanied by a high flux of energetic particles recorded both in near-Earth space and at ground level. Our purpose is to provide evidence of flare acceler ation in a major solar energetic particle (SEP) event. We first present observations from ACE/EPAM, GOES, and the Apatity neutron monitor. It is found that the initial particle release time coincides with the flare emission and that the spectrum becomes softer and the anisotropy becomes weaker during particle injection, indicating that the acceleration source changes from a confined coronal site to a widespread interplanetary CME-driven shock. We then describe a comprehensive study of the associated flare active region. By use of imaging data from HINODE/SOT and SOHO/MDI magnetogram, we infer the flare magnetic reconnection rate in the form of the magnetic flux change rate. This correlates in time with the microwave emission, indicating a physical link between the flare magnetic reconnection and the acceleration of nonthermal particles. Combining radio spectrograph data from Huairou/NOAC, Culgoora/IPS, Learmonth/RSTN, and WAVES/WIND leads to a continuous and longlasting radio burst extending from a few GHz down to several kHz. Based on the photospheric vector magnetogram from Huairou/NOAC and the nonlinear force free field (NFFF) reconstruction method, we derive the 3D magnetic field configuration shortly after the eruption. Furthermore, we also compute coronal field lines extending to a few solar radii using a potential-field source-surface (PFSS) model. Both the so-called type III-l burst and the magnetic field configuration suggest that open-field lines extend from the flare active region into interplanetary space, allowing the accelerated and charged particles escape.
Bromine (atomic number Z=35) and antimony (Z=51) are extremely difficult to detect in stars. In very few instances, weak and mostly uncertain identifications of Br I, Br II, and Sb II in relatively cool, chemically peculiar stars were successful. Ado pted solar abundance values rely on meteoritic determinations. Here, we announce the first identification of these species in far-ultraviolet spectra of hot stars (with effective temperatures of 49,500-70,000 K), namely in helium-rich (spectral type DO) white dwarfs. We identify the Br VI resonance line at 945.96 A. A previous claim of Br detection based on this line is incorrect because its wavelength position is inaccurate by about 7 A in atomic databases. Taking advantage of precise laboratory measurements, we identify this line as well as two other, subordinate Br VI lines. Antimony is detected by the Sb V resonance doublet at 1104.23/1225.98 A, as well as two subordinate Sb VI lines. A model-atmosphere analysis reveals strongly oversolar Br and Sb abundances that are caused by radiative-levitation dominated atomic diffusion.
Solar energetic particles (SEPs), accelerated during solar eruptions, propagate in turbulent solar wind before being observed with in situ instruments. In order to interpret their origin through comparison with remote-sensing observations of the sola r eruption, we thus must deconvolve the transport effects due to the turbulent magnetic fields from the SEP observations. Recent research suggests that the SEP propagation is guided by the turbulent meandering of the magnetic fieldlines across the mean magnetic field. However, the lengthening of the distance the SEPs travel, due to the fieldline meandering, has so far not been included in SEP event analysis. This omission can cause significant errors in estimation of the release times of SEPs at the Sun. We investigate the distance travelled by the SEPs by considering them to propagate along fieldlines that meander around closed magnetic islands that are inherent in turbulent plasma. We introduce a fieldline randow walk model which takes into account the physical scales associated to the magnetic islands. Our method remedies the problem of the diffusion equation resulting in unrealistically short pathlengths, and the fractal dependence of the pathlength of random walk on the length of the random-walk step. We find that the pathlength from the Sun to 1 au can be below the nominal Parker spiral length for SEP events taking place at solar longitudes 45E to 60W, whereas the western and behind-the-limb particles can experience pathlengths longer than 2 au due to fieldline meandering.
Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zer o to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا