ترغب بنشر مسار تعليمي؟ اضغط هنا

The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies

157   0   0.0 ( 0 )
 نشر من قبل David Paneque
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma rays) on Mrk421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.



قيم البحث

اقرأ أيضاً

We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of February, 2010 when an extraordinary flare reaching a level of $sim$27~Crab Units above 1~TeV was measured in very-high-ener gy (VHE) $gamma$-rays with the VERITAS observatory. This is the highest flux state for Mrk 421 ever observed in VHE $gamma$-rays. Data are analyzed from a coordinated campaign across multiple instruments including VHE $gamma$-ray (VERITAS, MAGIC), high-energy (HE) $gamma$-ray (Fermi-LAT), X-ray (Swift}, RXTE, MAXI), optical (including the GASP-WEBT collaboration and polarization data) and radio (Metsahovi, OVRO, UMRAO). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare `decline epochs. The main flare statistics allow 2-minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of $sim$25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor ($delta gtrsim 33$) and the size of the emission region ($ delta^{-1}R_B lesssim 3.8times 10^{13},,mbox{cm}$) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10-minute-binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship: from linear to quadratic to lack of correlation to anti-correlation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain by the classic single-zone synchrotron self-Compton model.
We report a characterization of the multi-band flux variability and correlations of the nearby (z=0.031) blazar Markarian 421 (Mrk 421) using data from Mets{a}hovi, Swift, Fermi-LAT, MAGIC, FACT and other collaborations and instruments from November 2014 till June 2016. Mrk 421 did not show any prominent flaring activity, but exhibited periods of historically low activity above 1 TeV (F$_{>1mathrm{TeV}}<$ 1.7$times$10$^{-12}$ ph cm$^{-2}$ s$^{-1}$) and in the 2-10 keV (X-ray) band (F$_{2-10 mathrm{keV}}<$3.6$times$10$^{-11}$ erg cm$^{-2}$ s$^{-1}$), during which the Swift-BAT data suggests an additional spectral component beyond the regular synchrotron emission. The highest flux variability occurs in X-rays and very-high-energy (E$>$0.1 TeV) $gamma$-rays, which, despite the low activity, show a significant positive correlation with no time lag. The HR$_mathrm{keV}$ and HR$_mathrm{TeV}$ show the harder-when-brighter trend observed in many blazars, but the trend flattens at the highest fluxes, which suggests a change in the processes dominating the blazar variability. Enlarging our data set with data from years 2007 to 2014, we measured a positive correlation between the optical and the GeV emission over a range of about 60 days centered at time lag zero, and a positive correlation between the optical/GeV and the radio emission over a range of about 60 days centered at a time lag of $43^{+9}_{-6}$ days.This observation is consistent with the radio-bright zone being located about 0.2 parsec downstream from the optical/GeV emission regions of the jet. The flux distributions are better described with a LogNormal function in most of the energy bands probed, indicating that the variability in Mrk 421 is likely produced by a multiplicative process.
213 - J.S. Kaastra , J. Ebrero , N. Arav 2014
We present in this paper the results of a 270 ks Chandra HETGS observation in the context of a large multiwavelength campaign on the Seyfert galaxy Mrk 509. The HETGS spectrum allows us to study the high ionisation warm absorber and the Fe-K complex in Mrk 509. We search for variability in the spectral properties of the source with respect to previous observations in this campaign, as well as for evidence of ultra-fast outflow signatures. The Chandra HETGS X-ray spectrum of Mrk 509 was analysed using the SPEX fitting package. We confirm the basic structure of the warm absorber found in the 600 ks XMM-Newton RGS observation observed three years earlier, consisting of five distinct ionisation components in a multikinematic regime. We find little or no variability in the physical properties of the different warm absorber phases with respect to previous observations in this campaign, except for component D2 which has a higher column density at the expense of component C2 at the same outflow velocity (-240 km/s). Contrary to prior reports we find no -700 km/s outflow component. The O VIII absorption line profiles show an average covering factor of 0.81 +/- 0.08 for outflow velocities faster than -100 km/s, similar to those measured in the UV. This supports the idea of a patchy wind. The relative metal abundances in the outflow are close to proto-solar. The narrow component of the Fe Kalpha emission line shows no changes with respect to previous observations which confirms its origin in distant matter. The narrow line has a red wing that can be interpreted to be a weak relativistic emission line. We find no significant evidence of ultra-fast outflows in our new spectrum down to the sensitivity limit of our data.
Mrk 421 and Mrk 501 are two close, bright and well-studied high-synchrotron-peaked blazars, which feature bright and persistent GeV and TeV emission. We use the longest and densest dataset of unbiased observations of these two sources, obtained at Te V and GeV energies during five years with FACT and Fermi-LAT. To characterize the variability and derive constraints on the emission mechanism, we augment the dataset with contemporaneous multi-wavelength observations from radio to X-rays. We correlate the light curves, identify individual flares in TeV energies and X-rays, and look for inter-band connections, which are expected from the shock propagations within the jet. For Mrk 421, we find that the X-rays and TeV energies are well correlated with close to zero lag, supporting the SSC emission scenario. The timing between the TeV, X-ray flares in Mrk 421 is consistent with periods expected in the case of Lense-Thirring precession of the accretion disc. The variability of Mrk 501 on long-term periods is also consistent with SSC, with a sub-day lag between X-rays and TeV energies. Fractional variability for both blazars shows a two bump structure with the highest variability in the X-ray and TeV bands.
129 - M. L. Ahnen 2016
We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1 which includes, among other instruments, MAGIC, VERITAS, Whipple 10-m, Fermi-LA T, RXTE, Swift, GASP-WEBT and VLBA. We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found in the acquired data set. The higher variability in the very high energy (>100 GeV, VHE) gamma-ray emission and the lack of correlation with the X-ray emission indicate that the highest-energy electrons that are responsible for the VHE gamma-rays do not make a dominant contribution to the ~1 keV emission. Alternatively, there could be a very variable component contributing to the VHE gamma-ray emission in addition to that coming from the synchrotron self-Compton (SSC) scenarios. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters. We find that there is some degeneracy in both the one-zone and the two-zone SSC scenarios that were probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The SSC model grid-scan shows that the flaring activity around 2009 May 22 cannot be modeled adequately with a one-zone SSC scenario, while it can be suitably described within a two-independent-zone SSC scenario. The observation of an electric vector polarization angle rotation coincident with the gamma-ray flare from 2009 May 1 resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا