ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting the power of multiplicity: a holistic survey of network-layer multipath

83   0   0.0 ( 0 )
 نشر من قبل Junaid Qadir
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet is inherently a multipath network---for an underlying network with only a single path connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault-tolerance (through the use of multiple paths in backup/ redundant arrangements). There are many emerging trends in networking that signify that the Internets future will be unmistakably multipath, including the use of multipath technology in datacenter computing; multi-interface, multi-channel, and multi-antenna trends in wireless; ubiquity of mobile devices that are multi-homed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as MP-TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely the control plane problem of how to compute and select the routes, and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work.



قيم البحث

اقرأ أيضاً

Multipath routing is useful for networks to achieve load sharing among multiple routing paths. Multipath BGP (MBGP) is a technique to realize inter-domain multipath routing by enabling a BGP router to install multiple equally-good routes to a destina tion prefix. Most of previous works did not distinguish between intra-domain and inter-domain multipath routing. In this paper, we present a measurement study on the deployment of M-BGP in a large Internet service provider (ISP) network. Our method combines control-plane BGP measurements using Looking Glasses (LG), and data-plane traceroute measurements using RIPE Atlas. We focus on Hurricane Electric (AS6939) because it is a global ISP that connects with hundreds of major exchange points and exchanges IP traffic with thousands of different networks. And more importantly, we find that this ISP has by far the largest number of M-BGP deployments among autonomous systems with LG servers. Specifically, Hurricane Electric has deployed M-BGP with 512 of its peering ASes at 58 PoPs around the world, including many top ASes and content providers. We also observe that most of its M-BGP deployments involve IXP interconnections. Our work provides insights into the latest deployment of M-BGP in a major ISP network and it highlights the characteristics and effectiveness of M-BGP as a means to realize load sharing.
The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the applicati on of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays based on the decode-and-forward strategy. With nodes transmitting at different powers, the proposed algorithm adapts the resource allocation according to the differing link rates and we prove theoretically that the optimisation problem is log-concave. The proposed technique is shown to perform significantly better than the widely studied selection-cooperation technique. We then undertake an experimental study on a software radio platform of the decoding performance of PNC with unbalanced SNRs in the multiple-access transmissions. This problem is inherent in cellular networks and it is shown that with channel coding and decoders based on multiuser detection and successive interference cancellation, the performance is better with power imbalance. This paper paves the way for further research in multi-cell PNC, resource allocation, and the implementation of PNC with higher-order modulations and advanced coding techniques.
Multipath BGP (M-BGP) allows a BGP router to install multiple equally-good paths, via parallel inter-domain border links, to a destination prefix. M-BGP differs from the multipath routing techniques in many ways, e.g. M-BGP is only implemented at bor der routers of Autonomous Systems (ASes); and while it shares traffic to different IP addresses in a destination prefix via different border links, any traffic to a given destination IP always follows the same border link. Recently we studied Looking Glass data and reported the wide deployment of M-BGP in the Internet; in particular, Hurricane Electric (AS6939) has implemented over 1,000 cases of M-BGP to hundreds of its peering ASes. In this paper, we analyzed the performance of M-BGP. We used RIPE Atlas to send traceroute probes to a series of destination prefixes through Hurricane Electrics border routers implemented with M-BGP. We examined the distribution of Round Trip Time to each probed IP address in a destination prefix and their variation during the measurement. We observed that the deployment of M-BGP can guarantee stable routing between ASes and enhance a networks resilience to traffic changes. Our work provides insights into the unique characteristics of M-BGP as an effective technique for load balancing.
The introduction of Dynamic Adaptive Streaming over HTTP (DASH) helped reduce the consumption of resource in video delivery, but its client-based rate adaptation is unable to optimally use the available end-to-end network bandwidth. We consider the p roblem of optimizing the delivery of video content to mobile clients while meeting the constraints imposed by the available network resources. Observing the bandwidth available in the networks two main components, core network, transferring the video from the servers to edge nodes close to the client, and the edge network, which is in charge of transferring the content to the user, via wireless links, we aim to find an optimal solution by exploiting the predictability of future user requests of sequential video segments, as well as the knowledge of available infrastructural resources at the core and edge wireless networks in a given future time window. Instead of regarding the bottleneck of the end-to-end connection as our throughput, we distribute the traffic load over time and use intermediate nodes between the server and the client for buffering video content to achieve higher throughput, and ultimately significantly improve the Quality of Experience for the end user in comparison with current solutions.
BGP-Multipath (BGP-M) is a multipath routing technique for load balancing. Distinct from other techniques deployed at a router inside an Autonomous System (AS), BGP-M is deployed at a border router that has installed multiple inter-domain border link s to a neighbour AS. It uses the equal-cost multi-path (ECMP) function of a border router to share traffic to a destination prefix on different border links. Despite recent research interests in multipath routing, there is little study on BGP-M. Here we provide the first measurement and a comprehensive analysis of BGP-M routing in the Internet. We extracted information on BGP-M from query data collected from Looking Glass (LG) servers. We revealed that BGP-M has already been extensively deployed and used in the Internet. A particular example is Hurricane Electric (AS6939), a Tier-1 network operator, which has implemented >1,000 cases of BGP-M at 69 of its border routers to prefixes in 611 of its neighbour ASes, including many hyper-giant ASes and large content providers, on both IPv4 and IPv6 Internet. We examined the distribution and operation of BGP-M. We also ran traceroute using RIPE Atlas to infer the routing paths, the schemes of traffic allocation, and the delay on border links. This study provided the state-of-the-art knowledge on BGP-M with novel insights into the unique features and the distinct advantages of BGP-M as an effective and readily available technique for load balancing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا