ﻻ يوجد ملخص باللغة العربية
We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB spectra; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities; and the magnetically-induced breaking of statistical isotropy. Overall, Planck data constrain the amplitude of PMFs to less than a few nanogauss. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are $B_{1,mathrm{Mpc}}< 4.4$ nG (where $B_{1,mathrm{Mpc}}$ is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity, and $B_{1,mathrm{Mpc}}< 5.6$ nG for a maximally helical field.For nearly scale-invariant PMFs we obtain $B_{1,mathrm{Mpc}}<2.0$ nG and $B_{1,mathrm{Mpc}}<0.9$ nG if the impact of PMFs on the ionization history of the Universe is included. From the analysis of magnetically-induced non-Gaussianity we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is $B_{1,mathrm{Mpc}}< 2.8$ nG. A search for preferred directions in the magnetically-induced passive bispectrum yields $B_{1,mathrm{Mpc}}< 4.5$ nG, whereas the the compensated-scalar bispectrum gives $B_{1,mathrm{Mpc}}< 3$ nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in $EE$ and $BB$ at 70 GHz and gives $B_{1,mathrm{Mpc}}< 1380$ nG. In our final analysis, we consider the harmonic-space correlations produced by Alfven waves, finding no significant evidence for the presence of these waves. Together, these results comprise a comprehensive set of constraints on possible PMFs with Planck data.
The Planck full mission cosmic microwave background(CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity(NG). Using three classes of optimal bispectrum estimators - separable template-fitting
We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey. The Planck full mission temperature data and a fir
We show that the new precise measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies made by the Planck satellite significantly improves previous constraints on the cosmic gravitational waves background (CGWB) at f
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent
We analyse the Planck full-mission cosmic microwave background (CMB) temperature and E-mode polarization maps to obtain constraints on primordial non-Gaussianity (NG). We compare estimates obtained from separable template-fitting, binned, and modal b