ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for massless higher spin field interacting with a geometrical background

54   0   0.0 ( 0 )
 نشر من قبل Giuseppe Bandelloni
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a very general four dimensional Field Theory model describing the dynamics of a massless higher spin $N$ symmetric tensor field particle interacting with a geometrical background.This model is invariant under the action of an extended linear diffeomorphism. We investigate the consistency of the equations of motion, and the highest spin degrees of freedom are extracted by means of a set of covariant constraints. Moreover the the highest spin equations of motions (and in general all the highest spin field 1-PI irreducible Green functions) are invariant under a chain of transformations induced by a set of $N-2$ Ward operators, while the auxiliary fields equations of motion spoil this symmetry. The first steps to a quantum extension of the model are discussed on the basis of the Algebraic Field Theory.Technical aspects are reported in Appendices; in particular one of them is devoted to illustrate the spin-$2$ case.



قيم البحث

اقرأ أيضاً

We consider a massless higher spin field theory within the BRST approach and construct a general off-shell cubic vertex corresponding to irreducible higher spin fields of helicities $s_1, s_2, s_3$. Unlike the previous works on cubic vertices, which do not take into account of the trace constraints, we use the complete BRST operator, including the trace constraints that describe an irreducible representation with definite integer helicity. As a result, we generalize the cubic vertex found in [arXiv:1205.3131 [hep-th]] and calculate the new contributions to the vertex, which contain additional terms with a smaller number space-time derivatives of the fields as well as the terms without derivatives.
We give an explicit superspace construction of higher spin conserved supercurrents built out of $4D,mathcal{N}=1$ massless supermultiplets of arbitrary spin. These supercurrents are gauge invariant and generate a large class of cubic interactions bet ween a massless supermultiplet with superspin $Y_1=s_1+1/2$ and two massless supermultiplets of arbitrary superspin $Y_2$. These interactions are possible only for $s_1geq 2Y_2$. At the equality, the supercurrent acquires its simplest form and defines the supersymmetric, higher spin extension of the linearized Bel-Robinson tensor.
We construct a double field theory coupled to the fields present in Vasilievs equations. Employing the semi-covariant differential geometry, we spell a functional in which each term is completely covariant with respect to $mathbf{O}(4,4)$ T-duality, doubled diffeomorphisms, $mathbf{Spin}(1,3)$ local Lorentz symmetry and, separately, $mathbf{HS}(4)$ higher spin gauge symmetry. We identify a minimal set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further supplemented, the BPS-like conditions reduce to the bosonic Vasiliev equations.
We determine the current exchange amplitudes for free totally symmetric tensor fields $vf_{mu_1 ... mu_s}$ of mass $M$ in a $d$-dimensional $dS$ space, extending the results previously obtained for $s=2$ by other authors. Our construction is based on an unconstrained formulation where both the higher-spin gauge fields and the corresponding gauge parameters $Lambda_{mu_1 >... mu_{s-1}}$ are not subject to Fronsdals trace constraints, but compensator fields $alpha_{mu_1 ... mu_{s-3}}$ are introduced for $s > 2$. The free massive $dS$ equations can be fully determined by a radial dimensional reduction from a $(d+1)$-dimensional Minkowski space time, and lead for all spins to relatively handy closed-form expressions for the exchange amplitudes, where the external currents are conserved, both in $d$ and in $(d+1)$ dimensions, but are otherwise arbitrary. As for $s=2$, these amplitudes are rational functions of $(ML)^2$, where $L$ is the $dS$ radius. In general they are related to the hypergeometric functions $_3F_2(a,b,c;d,e;z)$, and their poles identify a subset of the partially-massless discrete states, selected by the condition that the gauge transformations of the corresponding fields contain some non-derivative terms. Corresponding results for $AdS$ spaces can be obtained from these by a formal analytic continuation, while the massless limit is smooth, with no van Dam-Veltman-Zakharov discontinuity.
We consider scattering of massless higher-spin particles in the eikonal regime in four dimensions. By demanding the absence of asymptotic superluminality, corresponding to positivity of the eikonal phase, we place constraints on the possible cubic co uplings which can appear in the theory. The cubic couplings come in two types: lower-derivative non-abelian vertices, and higher-derivative abelian vertices made out of gauge-invariant curvature tensors. We find that the abelian couplings between massless higher spins lead to an asymptotic time advance for certain choices of polarizations, indicating that these couplings should be absent unless new states come in at the scale suppressing the derivatives in these couplings. A subset of non-abelian cubic couplings are consistent with eikonal positivity, but are ruled out by consistency of the four-particle amplitude away from the eikonal limit. The eikonal constraints are therefore complementary to the four-particle test, ruling out even trivial cubic curvature couplings in any theory with a finite number of massless higher spins and no new physics at the scale suppressing derivatives in these vertices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا