ترغب بنشر مسار تعليمي؟ اضغط هنا

Injective metrizability and the duality theory of cubings

43   0   0.0 ( 0 )
 نشر من قبل Dan Guralnik
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following his discovery that finite metric spaces have injective envelopes naturally admitting a polyhedral structure, Isbell, in his pioneering work on injective metric spaces, attempted a characterization of cellular complexes admitting the structure of an injective metric space. A bit later, Mai and Tang confirmed Isbells conjecture that a simplicial complex is injectively metrizable if and only if it is collapsible. Considerable advances in the understanding, classification and applications of injective envelopes have since been made by Dress, Huber, Sturmfels and collaborators, and most recently by Lang. Unfortunately a combination theory for injective polyhedra is still unavailable. Here we expose a connection to the duality theory of cubings -- simply connected non-positively curved cubical complexes -- which provides a more principled and accessible approach to Mai and Tangs result, providing one with a powerful tool for systematic construction of locally-compact injective metric spaces: Main Theorem. Any complete pointed Gromov--Hausdorff limit of locally-finite piecewise-$ell_infty$ cubings is injective. This result may be construed as a combination theorem for the simplest injective polytopes, $ell_infty$-parallelopipeds, where the condition for retaining injectivity is the combinatorial non-positive curvature condition on the complex. Thus it represents a first step towards a more comprehensive combination theory for injective spaces. In addition to setting the earlier work on injectively metrizable complexes within its proper context of non-positively curved geometry, this paper is meant to provide the reader with a systematic review of the results~ ---~ otherwise scattered throughout the geometric group theory literature~ ---~ on the duality theory and the geometry of cubings, which make this connection possible.

قيم البحث

اقرأ أيضاً

140 - Thomas Haettel 2021
In this article, we show that the Goldman-Iwahori metric on the space of all norms on a fixed vector space satisfies the Helly property for balls. On the non-Archimedean side, we deduce that most classical Bruhat-Tits buildings may be endowed with a natural piecewise $ell^infty$ metric which is injective. We also prove that most classical semisimple groups over non-Archimedean local fields act properly and cocompactly on Helly graphs. This gives another proof of biautomaticity for their uniform lattices. On the Archimedean side, we deduce that most classical symmetric spaces of non-compact type may be endowed with a natural piecewise $ell^infty$ metric which is coarsely Helly. We also prove that most classical semisimple groups over Archimedean local fields act properly and cocompactly on injective metric spaces. The only exception is the special linear group: if $n geq 3$ and $mathbb{K}$ is a local field, we show that $operatorname{SL}(n,mathbb{K})$ does not act properly and coboundedly on an injective metric space.
128 - B.T.T.Wong 2021
Dualism is a metaphysical, philosophical concept which refers to two irreducible, heterogeneous principles. This idea is known to appear in a lot of places in the universe, however a rigorous mathematical definition and theory is not yet established in a formal way. In this paper, we develop a novel theory to represent philosophical dualism in a formal mathematical construction with the context of quantum physics, known as the theory of duality. We will use traditional Chinese philosophical concepts in duality as the foundation as it greatly resembles to the mathematical and physical construction for our purpose. This paper will demonstrate how to convolve metaphysical idea into mathematics and physics.
223 - Peter Zeiner 2012
Coincidence Site Lattices (CSLs) are a well established tool in the theory of grain boundaries. For several lattices up to dimension $d=4$, the CSLs are known explicitly as well as their indices and multiplicity functions. Many of them share a partic ular property: their multiplicity functions are multiplicative. We show how multiplicativity is connected to certain decompositions of CSLs and the corresponding coincidence rotations and present some criteria for multiplicativity. In general, however, multiplicativity is violated, while supermultiplicativity still holds.
Let $G$ be a connected semisimple Lie group. There are two natural duality constructions that assign to it the Langlands dual group $G^vee$ and the Poisson-Lie dual group $G^*$. The main result of this paper is the following relation between these tw o objects: the integral cone defined by the cluster structure and the Berenstein-Kazhdan potential on the double Bruhat cell $G^{vee; w_0, e} subset G^vee$ is isomorphic to the integral Bohr-Sommerfeld cone defined by the Poisson structure on the partial tropicalization of $K^* subset G^*$ (the Poisson-Lie dual of the compact form $K subset G$). By [5], the first cone parametrizes the canonical bases of irreducible $G$-modules. The corresponding points in the second cone belong to integral symplectic leaves of the partial tropicalization labeled by the highest weight of the representation. As a by-product of our construction, we show that symplectic volumes of generic symplectic leaves in the partial tropicalization of $K^*$ are equal to symplectic volumes of the corresponding coadjoint orbits in $operatorname{Lie}(K)^*$. To achieve these goals, we make use of (Langlands dual) double cluster varieties defined by Fock and Goncharov [9]. These are pairs of cluster varieties whose seed matrices are transpose to each other. There is a naturally defined isomorphism between their tropicalizations. The isomorphism between the cones described above is a particular instance of such an isomorphism associated to the double Bruhat cells $G^{w_0, e} subset G$ and $G^{vee; w_0, e} subset G^vee$.
There is both theoretical and numerical evidence that the set of irreducible representations of a reductive group over local or finite fields is naturally partitioned into families according to analytic properties of representations. Examples of such properties are the rate of decay at infinity of matrix coefficients in the local field setting, and the order of magnitude of character ratios in the finite field situation. In these notes we describe known results, new results, and conjectures in the theory of size of representations of classical groups over finite fields, whose ultimate goal is to classify the above mentioned families of representations and accordingly to estimate the relevant analytic properties of each family. Specifically, we treat two main issues: the first is the introduction of a rigorous definition of a notion of size for representations of classical groups, and the second issue is a method to construct and obtain information on each family of representation of a given size. In particular, we propose several compatible notions of size that we call U-RANK, TENSOR RANK and ASYMPTOTIC RANK, and we develop a method called ETA CORRESPONDENCE to construct the families of representation of each given rank. Rank suggests a new way to organize the representations of classical groups over finite and local fields - a way in which the building blocks are the smallest representations. This is in contrast to Harish-Chandras philosophy of cusp forms that is the main organizational principle since the 60s, and in it the building blocks are the cuspidal representations which are, in some sense, the LARGEST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا