ﻻ يوجد ملخص باللغة العربية
Topologically stable non-Abelian sine-Gordon solitons have been found recently in the $U(N)$ chiral Lagrangian and a $U(N)$ gauge theory with two $N$ by $N$ complex scalar fields coupled to each other. We construct the effective theory on a non-Abelian sine-Gordon soliton that is a nonlinear sigma model with the target space ${mathbb R} times {mathbb C}P^{N-1}$. We then show that ${mathbb C}P^{N-1}$ lumps on it represent $SU(N)$ Skyrmions in the bulk point of view, providing a physical realization of the rational map Ansatz for Skyrmions of the translational (Donaldson) type. We find therefore that Skyrmions can exist stably without the Skyrme term.
By employing the $1/N$ expansion, we compute the vacuum energy~$E(deltaepsilon)$ of the two-dimensional supersymmetric (SUSY) $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with $mathbb{Z}_N$ twisted boundary conditions to the second order in a SUS
We investigate the lattice ${mathbb C} P^{N-1}$ sigma model on $S_{s}^{1}$(large) $times$ $S_{tau}^{1}$(small) with the ${mathbb Z}_{N}$ symmetric twisted boundary condition, where a sufficiently large ratio of the circumferences ($L_{s}gg L_{tau}$)
In the leading order of the large-$N$ approximation, we study the renormalon ambiguity in the gluon (or, more appropriately, photon) condensate in the 2D supersymmetric $mathbb{C}P^{N-1}$ model on~$mathbb{R}times S^1$ with the $mathbb{Z}_N$ twisted b
We construct analytic (3+1)-dimensional Skyrmions living at finite Baryon density in the SU(N) Skyrme model that are not trivial embeddings of SU(2) into SU(N). We used Euler angles decomposition for arbitrary N and the generalized hedgehog Ansatz at
We study fractional Skyrmions in a $mathbb{C}P^2$ baby Skyrme model with a generalization of the easy-plane potential. By numerical methods, we find stable, metastable, and unstable solutions taking the shapes of molecules. Various solutions possess