ﻻ يوجد ملخص باللغة العربية
We consider the interaction of a ferromagnetic spinor Bose-Einstein condensate with a magnetic field gradient. The magnetic field gradient realizes a spin-position coupling that explicitly breaks time-reversal symmetry T and space parity P, but preserves the combined PT symmetry. We observe using numerical simulations, a first-order phase transition spontaneously breaking this re-maining symmetry. The transition to a low-gradient phase, in which gradient effects are frozen out by the ferromagnetic interaction, suggests the possibility of high-coherence magnetic sensors unaffected by gradient dephasing.
Open physical systems with balanced loss and gain, described by non-Hermitian parity-time ($mathcal{PT}$) reflection symmetric Hamiltonians, exhibit a transition which could engenders modes that exponentially decay or grow with time and thus spontane
The mean-field treatment of the Bose-Hubbard model predicts properties of lattice-trapped gases to be insensitive to the specific lattice geometry once system energies are scaled by the lattice coordination number $z$. We test this scaling directly b
We present the theory of spontaneous symmetry breaking (SSB) of discrete time translations as recently realized in the space-time crystals of an atomic Bose-Einstein condensate. The non-equilibrium physics related to such a driven-dissipative system
Entanglement entropy (EE), a fundamental conception in quantum information for characterizing entanglement, has been extensively employed to explore quantum phase transitions (QPTs). Although the conventional single-site mean-field (MF) approach succ
Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system para