ﻻ يوجد ملخص باللغة العربية
Cerenkov technology is often the optimal choice for particle identification in high energy particle collision applications. Typically, the most challenging regime is at high pseudorapidity (forward) where particle identification must perform well at high high laboratory momenta. For the upcoming Electron Ion Collider (EIC), the physics goals require hadron ($pi$, K, p) identification up to $sim$~50 GeV/c. In this region Cerenkov Ring-Imaging is the most viable solution. ewline The speed of light in a radiator medium is inversely proportional to the refractive index. Hence, for PID reaching out to high momenta a small index of refraction is required. Unfortunately, the lowest indices of refraction also result in the lowest light yield ($frac{dN_gamma}{dx} propto sin^2{left(theta_C right)}$) driving up the radiator length and thereby the overall detector cost. In this paper we report on a successful test of a compact RICH detector (1 meter radiator) capable of delivering in excess of 10 photoelectrons per ring with a low index radiator gas ($CF_4$). The detector concept is a natural extension of the PHENIX HBD detector achieved by adding focusing capability at low wavelength and adequate gain for high efficiency detection of single-electron induced avalanches. Our results indicate that this technology is indeed a viable choice in the forward direction of the EIC. The setup and results are described within.
At NISER-IoP detector laboratory an initiative is taken to build and test Gas Electron Multiplier (GEM) detectors for ALICE experiment. The optimisation of the gas flow rate and the long-term stability test of the GEM detector are performed. The method and test results are presented.
Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the $1.5 < midetamid < 2.2$ region of the muon end
A combination Time Projection Chamber-Cherenkov prototype detector has been developed as part of the Detector R&D Program for a future Electron Ion Collider. The prototype was tested at the Fermilab test beam facility to provide a proof of principle
Gaseous detectors are used in high energy physics as trackers or, more generally, as devices for the measurement of the particle position. For this reason, they must provide high spatial resolution and they have to be able to operate in regions of in
The GEM-based neutron detector has flourished in the past decade. However almost all the GEM-based neutron detectors work in the flow-gas mode, and the long-term performances of the detectors may be unstable due to the dynamic changes of atmospheric