ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifts of Non-compact Convex Sets and Cone Factorizations

158   0   0.0 ( 0 )
 نشر من قبل Chu Wang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we generalize the factorization theorem of Gouveia, Parrilo and Thomas to a broader class of convex sets. Given a general convex set, we define a slack operator associated to the set and its polar according to whether the convex set is full dimensional, whether it is a translated cone and whether it contains lines. We strengthen the condition of a cone lift by requiring not only the convex set is the image of an affine slice of a given closed convex cone, but also its recession cone is the image of the linear slice of the closed convex cone. We show that the generalized lift of a convex set can also be characterized by the cone factorization of a properly defined slack operator.



قيم البحث

اقرأ أيضاً

137 - Feng Guo , Chu Wang , Lihong Zhi 2014
We consider the problem of the semidefinite representation of a class of non-compact basic semialgebraic sets. We introduce the conditions of pointedness and closedness at infinity of a semialgebraic set and show that under these conditions our modif ied hierarchies of nested theta bodies and Lasserres relaxations converge to the closure of the convex hull of $S$. Moreover, if the PP-BDR property is satisfied, our theta body and Lasserres relaxation are exact when the order is large enough; if the PP-BDR property does not hold, our hierarchies convergent uniformly to the closure of the convex hull of $S$ restricted to every fixed ball centered at the origin. We illustrate through a set of examples that the conditions of pointedness and closedness are essential to ensure the convergence. Finally, we provide some strategies to deal with cases where the conditions of pointedness and closedness are violated.
161 - I.Banakh , T.Banakh , K.Koshino 2013
For an infinite cardinal $kappa$ let $ell_2(kappa)$ be the linear hull of the standard othonormal base of the Hilbert space $ell_2(kappa)$ of density $kappa$. We prove that a non-separable convex subset $X$ of density $kappa$ in a locally convex line ar metric space if homeomorphic to the space (i) $ell_2^f(kappa)$ if and only if $X$ can be written as countable union of finite-dimensional locally compact subspaces, (ii) $[0,1]^omegatimes ell_2^f(kappa)$ if and only if $X$ contains a topological copy of the Hilbert cube and $X$ can be written as a countable union of locally compact subspaces.
The Euclidean space notion of convex sets (and functions) generalizes to Riemannian manifolds in a natural sense and is called geodesic convexity. Extensively studied computational problems such as convex optimization and sampling in convex sets also have meaningful counterparts in the manifold setting. Geodesically convex optimization is a well-studied problem with ongoing research and considerable recent interest in machine learning and theoretical computer science. In this paper, we study sampling and convex optimization problems over manifolds of non-negative curvature proving polynomial running time in the dimension and other relevant parameters. Our algorithms assume a warm start. We first present a random walk based sampling algorithm and then combine it with simulated annealing for solving convex optimization problems. To our knowledge, these are the first algorithms in the general setting of positively curved manifolds with provable polynomial guarantees under reasonable assumptions, and the first study of the connection between sampling and optimization in this setting.
Efficiently representing real world data in a succinct and parsimonious manner is of central importance in many fields. We present a generalized greedy pursuit framework, allowing us to efficiently solve structured matrix factorization problems, wher e the factors are allowed to be from arbitrary sets of structured vectors. Such structure may include sparsity, non-negativeness, order, or a combination thereof. The algorithm approximates a given matrix by a linear combination of few rank-1 matrices, each factorized into an outer product of two vector atoms of the desired structure. For the non-convex subproblems of obtaining good rank-1 structured matrix atoms, we employ and analyze a general atomic power method. In addition to the above applications, we prove linear convergence for generalized pursuit variants in Hilbert spaces - for the task of approximation over the linear span of arbitrary dictionaries - which generalizes OMP and is useful beyond matrix problems. Our experiments on real datasets confirm both the efficiency and also the broad applicability of our framework in practice.
This paper presents a selected tour through the theory and applications of lifts of convex sets. A lift of a convex set is a higher-dimensional convex set that projects onto the original set. Many convex sets have lifts that are dramatically simpler to describe than the original set. Finding such simple lifts has significant algorithmic implications, particularly for optimization problems. We consider both the classical case of polyhedral lifts, described by linear inequalities, as well as spectrahedral lifts, defined by linear matrix inequalities, with a focus on recent developments related to spectrahedral lifts. Given a convex set, ideally we would either like to find a (low-complexity) polyhedral or spectrahedral lift, or find an obstruction proving that no such lift is possible. To this end, we explain the connection between the existence of lifts of a convex set and certain structured factorizations of its associated slack operator. Based on this characterization, we describe a uniform approach, via sums of squares, to the construction of spectrahedral lifts of convex sets and illustrate the method on several families of examples. Finally, we discuss two flavors of obstruction to the existence of lifts: one related to facial structure, and the other related to algebraic properties of the set in question. Rather than being exhaustive, our aim is to illustrate the richness of the area. We touch on a range of different topics related to the existence of lifts, and present many examples of lifts from different areas of mathematics and its applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا