ترغب بنشر مسار تعليمي؟ اضغط هنا

Index Coding with Coded Side-Information

152   0   0.0 ( 0 )
 نشر من قبل Namyoon Lee
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This letter investigates a new class of index coding problems. One sender broadcasts packets to multiple users, each desiring a subset, by exploiting prior knowledge of linear combinations of packets. We refer to this class of problems as index coding with coded side-information. Our aim is to characterize the minimum index code length that the sender needs to transmit to simultaneously satisfy all user requests. We show that the optimal binary vector index code length is equal to the minimum rank (minrank) of a matrix whose elements consist of the sets of desired packet indices and side- information encoding matrices. This is the natural extension of matrix minrank in the presence of coded side information. Using the derived expression, we propose a greedy randomized algorithm to minimize the rank of the derived matrix.



قيم البحث

اقرأ أيضاً

Index coding is a source coding problem in which a broadcaster seeks to meet the different demands of several users, each of whom is assumed to have some prior information on the data held by the sender. If the sender knows its clients requests and t heir side-information sets, then the number of packet transmissions required to satisfy all users demands can be greatly reduced if the data is encoded before sending. The collection of side-information indices as well as the indices of the requested data is described as an instance of the index coding with side-information (ICSI) problem. The encoding function is called the index code of the instance, and the number of transmissions employed by the code is referred to as its length. The main ICSI problem is to determine the optimal length of an index code for and instance. As this number is hard to compute, bounds approximating it are sought, as are algorithms to compute efficient index codes. Two interesting generalizations of the problem that have appeared in the literature are the subject of this work. The first of these is the case of index coding with coded side information, in which linear combinations of the source data are both requested by and held as users side-information. The second is the introduction of error-correction in the problem, in which the broadcast channel is subject to noise. In this paper we characterize the optimal length of a scalar or vector linear index code with coded side information (ICCSI) over a finite field in terms of a generalized min-rank and give bounds on this number based on constructions of random codes for an arbitrary instance. We furthermore consider the length of an optimal error correcting code for an instance of the ICCSI problem and obtain bounds on this number, both for the Hamming metric and for rank-metric errors. We describe decoding algorithms for both categories of errors.
An encoder, subject to a rate constraint, wishes to describe a Gaussian source under squared error distortion. The decoder, besides receiving the encoders description, also observes side information consisting of uncompressed source symbol subject to slow fading and noise. The decoder knows the fading realization but the encoder knows only its distribution. The rate-distortion function that simultaneously satisfies the distortion constraints for all fading states was derived by Heegard and Berger. A layered encoding strategy is considered in which each codeword layer targets a given fading state. When the side-information channel has two discrete fading states, the expected distortion is minimized by optimally allocating the encoding rate between the two codeword layers. For multiple fading states, the minimum expected distortion is formulated as the solution of a convex optimization problem with linearly many variables and constraints. Through a limiting process on the primal and dual solutions, it is shown that single-layer rate allocation is optimal when the fading probability density function is continuous and quasiconcave (e.g., Rayleigh, Rician, Nakagami, and log-normal). In particular, under Rayleigh fading, the optimal single codeword layer targets the least favorable state as if the side information was absent.
139 - Behzad Asadi , Lawrence Ong , 2016
We consider the three-receiver Gaussian multiple-input multiple-output (MIMO) broadcast channel with an arbitrary number of antennas at each of the transmitter and the receivers. We investigate the degrees-of-freedom (DoF) region of the channel when each receiver requests a private message, and may know some of the messages requested by the other receivers as receiver message side information (RMSI). We establish the DoF region of the channel for all 16 possible non-isomorphic RMSI configurations by deriving tight inner and outer bounds on the region. To derive the inner bounds, we first propose a scheme for each RMSI configuration which exploits both the null space and the side information of the receivers. We then use these schemes in conjunction with time sharing for 15 RMSI configurations, and with time sharing and two-symbol extension for the remaining one. To derive the outer bounds, we construct enhanc
We study the fundamental problem of index coding under an additional privacy constraint that requires each receiver to learn nothing more about the collection of messages beyond its demanded messages from the server and what is available to it as sid e information. To enable such private communication, we allow the use of a collection of independent secret keys, each of which is shared amongst a subset of users and is known to the server. The goal is to study properties of the key access structures which make the problem feasible and then design encoding and decoding schemes efficient in the size of the server transmission as well as the sizes of the secret keys. We call this the private index coding problem. We begin by characterizing the key access structures that make private index coding feasible. We also give conditions to check if a given linear scheme is a valid private index code. For up to three users, we characterize the rate region of feasible server transmission and key rates, and show that all feasible rates can be achieved using scalar linear coding and time sharing; we also show that scalar linear codes are sub-optimal for four receivers. The outer bounds used in the case of three users are extended to arbitrary number of users and seen as a generalized version of the well-known polymatroidal bounds for the standard non-private index coding. We also show that the presence of common randomness and private randomness does not change the rate region. Furthermore, we study the case where no keys are shared among the users and provide some necessary and sufficient conditions for feasibility in this setting under a weaker notion of privacy. If the server has the ability to multicast to any subset of users, we demonstrate how this flexibility can be used to provide privacy and characterize the minimum number of server multicasts required.
169 - Behzad Asadi , Lawrence Ong , 2014
This paper investigates the capacity region of the three-receiver AWGN broadcast channel where the receivers (i) have private-message requests and (ii) may know some of the messages requested by other receivers as side information. We first classify all 64 possible side information configurations into eight groups, each consisting of eight members. We next construct transmission schemes, and derive new inner and outer bounds for the groups. This establishes the capacity region for 52 out of 64 possible side information configurations. For six groups (i.e., groups 1, 2, 3, 5, 6, and 8 in our terminology), we establish the capacity region for all their members, and show that it tightens both the best known inner and outer bounds. For group 4, our inner and outer bounds tighten the best known inner bound and/or outer bound for all the group members. Moreover, our bounds coincide at certain regions, which can be characterized by two thresholds. For group 7, our inner and outer bounds coincide for four members, thereby establishing the capacity region. For the remaining four members, our bounds tighten both the best known inner and outer bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا