ترغب بنشر مسار تعليمي؟ اضغط هنا

A Heterotic QCD Axion

42   0   0.0 ( 0 )
 نشر من قبل Evgeny Buchbinder
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a KSVZ axion with a decay constant in the phenomenologically allowed range can be obtained in certain $E_8times E_8$ heterotic string models. These models have an enhanced symmetry locus in the moduli space, and a non-universal, Kahler moduli dependent Fayet-Iliopoulos term which vanishes at this locus. Close to this locus the Fayet-Iliopoulos term is small and can lead to an axion decay constant significantly lower than the string scale. In this way, the no-go arguments of Svrcek and Witten, which are based on a universal, dilaton-dependent Fayet-Iliopoulos term, can be avoided. The relevant axion originates from phases of bundle moduli which correspond to deformations away from the enhanced symmetry locus. We construct an explicit example, based on a heterotic line bundle standard model, with all the required ingredients.

قيم البحث

اقرأ أيضاً

A holographic model of QCD axion is presented. It describes a composite axion in the KSVZ class. Having a gravity dual, based on the Witten-Sakai-Sugimoto model, it is calculable in the strongly coupled regime. Its basic properties are derived, inclu ding the low energy Lagrangian, from which the axion couplings to nucleons can be derived. Basic features in the deconfined phase are studied as well. In particular, the temperature dependence of the axion mass is extracted from the topological susceptibility. As an aside, the topological susceptibility of strongly coupled ${cal N}=4$ SYM at finite temperature is derived for the first time.
88 - Yang Bai , Vernon Barger , 2016
As a cold dark matter candidate, the QCD axion may form Bose-Einstein condensates, called axion stars, with masses around $10^{-11},M_{odot}$. In this paper, we point out that a brand new astrophysical object, a Hydrogen Axion Star (HAS), may well be formed by ordinary baryonic matter becoming gravitationally bound to an axion star. We study the properties of the HAS and find that the hydrogen cloud has a high pressure and temperature in the center and is likely in the liquid metallic hydrogen state. Because of the high particle number densities for both the axion star and the hydrogen cloud, the feeble interaction between axion and hydrogen can still generate enough internal power, around $10^{13}~mbox{W}times(m_a/5~mbox{meV})^4$, to make these objects luminous point sources. High resolution ultraviolet, optical and infrared telescopes can discover HAS via black-body radiation.
The QCD axion mass may receive contributions from small-size instantons or other Peccei-Quinn breaking effects. We show that it is possible for such a heavy QCD axion to induce slow-roll inflation if the potential is sufficiently flat near its maximu m by balancing the small instanton contribution with another Peccei-Quinn symmetry breaking term. There are two classes of such axion hilltop inflation, each giving a different relation between the axion mass at the minimum and the decay constant. The first class predicts the relation $m_phi sim 10^{-6}f_phi$, and the axion can decay via the gluon coupling and reheat the universe. Most of the predicted parameter region will be covered by various experiments such as CODEX, DUNE, FASER, LHC, MATHUSLA, and NA62 where the production and decay proceed through the same coupling that induced reheating. The second class predicts the relation $m_phi sim 10^{-6} f^2_phi/M_{rm pl}$. In this case, the axion mass is much lighter than in the previous case, and one needs another mechanism for successful reheating. The viable decay constant is restricted to be $10^8,{rm GeV}lesssim f_phi lesssim 10^{10},{rm GeV}$, which will be probed by future experiments on the electric dipole moment of nucleons. In both cases, requiring the axion hilltop inflation results in the strong CP phase that is close to zero.
117 - P.S. Howe 2008
The superspace geometry relevant to the heterotic string is reviewed from the point of view of the off-shell supermultiplet structure of $N=1,d=10$ supergravity. The anomaly-modified seven-form Bianchi identity is analysed at order $a^3$ and shown to admit a complete solution. The corresponding $a^3$ deformation of the dimension-zero torsion tensor is derived and shown to obey the appropriate cohomological constraint.
We classify the simply-connected supersymmetric parallelisable backgrounds of heterotic supergravity. They are all given by parallelised Lie groups admitting a bi-invariant lorentzian metric. We find examples preserving 4, 8, 10, 12, 14 and 16 of the 16 supersymmetries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا