ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Contribution of Fresh Cosmic Rays to the Excesses of Secondary Particles

151   0   0.0 ( 0 )
 نشر من قبل Yiqing Guo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard model of cosmic ray propagation has been very successful in explaining all kinds of the Galactic cosmic ray spectra. However, high precision measurement recently revealed the appreciable discrepancy between data and model expectation, from spectrum observations of $gamma$-rays, $e^+/e^-$ and probably the $B/C$ ratio starting from $sim$10 GeV energy. In this work, we propose that the fresh cosmic rays, which are supplied by the young accelerators and detained by local magnetic field, can contribute additional secondary particles interacting with local materials. As this early cosmic ray has a hard spectrum, the model calculation results in a two-component $gamma$-ray spectrum, which agree very well with the observation. Simultaneously, the expected neutrino number from the galactic plane could contribute $sim60%$ of IceCube observation neutrino number below a few hundreds of TeV. The same pp-collision process can account for a significant amount of the positron excesses. Under this model, it is expected that the excesses in $overline p/p$ and $B/C$ ratio will show up when energy is above $sim$10 GeV. We look forward that the model will be tested in the near future by new observations from AMS02, IceCube, AS$gamma$, HAWC and future experiments such as LHASSO, HiSCORE and CTA.



قيم البحث

اقرأ أيضاً

247 - Hong-Bo Hu 2009
Supernova remnants have long been regarded as sources of the Galactic cosmic rays up to petaelectronvolts, but convincing evidence is still lacking. In this work we explore the common origin of the subtle features of the cosmic ray spectra, such as t he knee of cosmic ray spectra and the excesses of electron/positron fluxes recently observed by ATIC, H.E.S.S., Fermi-LAT and PAMELA. Numerical calculation shows that those features of cosmic ray spectra can be well reproduced in a scenario with e$^+$e$^-$ pair production by interactions between high energy cosmic rays and background photons in an environment similar to the young supernova remnant. The success of such a coherent explanation serves in turn as an evidence that at least a portion of cosmic rays might be accelerated at young supernova remnants.
In ten years of observations, the IceCube neutrino observatory has revealed a neutrino sky in tension with previous expectations for neutrino point source emissions. Astrophysical objects associated with hadronic processes might act as production sit es for neutrinos, observed as point sources at Earth. Instead, a nearly isotropic flux of astrophysical neutrinos is observed up to PeV energies, prompting a reassessment of the assumed transport and production physics. This work applies a new physical explanation for neutrino production from populations of active galactic nuclei (AGN) and starburst galaxies to three years of public IceCube point source data. Specifically, cosmic rays (CRs) produced at such sources might interact with extragalactic background light and gas along the line of sight, generating a secondary neutrino flux. This model is tested alongside a number of typical flux weighting schemes, in all cases the all-sky flux contribution being constrained to percent levels of the reported IceCube diffuse astrophysical flux.
Current measurements of cosmic-ray fluxes have reached unprecedented accuracy thanks to the new generation of experiments, and in particular the AMS-02 mission. At the same time, significant progress has been made in the propagation models of galacti c cosmic rays. These models include several propagation parameters, which are usually inferred from the ratios of secondary to primary cosmic rays, and which depend on the cross sections describing the collisions among the various species of cosmic-ray nuclei. At present, our knowledge of these cross sections in the energy range where cosmic-ray interactions occur is limited, and this is a source of uncertainties in the predicted fluxes of secondary cosmic-ray nuclei. In this work we study the impact of the cross section uncertainties on the fluxes of light secondary nuclei (Li, Be, B) using a preliminary version of the upcoming {tt DRAGON2} code. We first present a detailed comparison of the secondary fluxes computed by implementing different parametrizations for the network of spallation cross sections. Then, we propose for the first time the use of secondary-over-secondary cosmic-ray flux ratios as a tool to investigate the consistency of cross sections models and give insight of the overall uncertainties coming from the cross sections parametrizations. We show that the uncertainties inferred from the cross section data are enough to explain the discrepancies in the Be and Li fluxes with respect to the AMS-02 data, with no need of a primary component in their spectra. In addition, we show that the fluxes of B, Be and Li can be simultaneously reproduced by rescaling their cross sections within the experimental uncertainty. Finally, we also revisit the diffusive estimation of the halo size, obtaining good agreement with previous works and a best fit value of $6.8 pm 1$ kpc from the most updated cross sections parametrizations.
104 - V. Grebenyuk 2018
The NUCLEON space observatory is a direct cosmic ray spectrometer designed to study cosmic ray nuclei with $Z=1-30$ at energies $10^{12}-10^{15}$ eV. It was launched as an additional payload onboard the Russian Resource-P No. 2 satellite. In this wor k B/C, N/O and subFe/Fe ratios are presented. The experiment has worked for half of its expected time, so the data have preliminary status, but they already give clear indications of several astrophysical phenomena, which are briefly discussed in this paper.
The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of th e secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a kinetic energy range extending from $0.1 GeV/n$ up to $100 TeV/n$ in the lab frame. In order to show the importance of our results for multi-messenger studies about the physics of CR propagation, we evaluate the propagated spectra of Galactic secondary nuclei, leptons, and gamma rays produced by the interactions of CRs with the insterstellar gas, exploiting the numerical codes DRAGON and GammaSky. We show that, adopting our cross section database, we are able to provide a good fit of a complete sample of CR observables, including: leptonic and hadronic spectra measured at Earth, the local interstellar spectra measured by Voyager, and the gamma-ray emissivities from Fermi-LAT collaboration. We also show a set of gamma-ray and neutrino full-sky maps and spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا