ترغب بنشر مسار تعليمي؟ اضغط هنا

Exotic roton excitations in quadrupolar Bose-Einstein condensates

180   0   0.0 ( 0 )
 نشر من قبل Martin Lahrz
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the occurrence of rotons in a quadrupolar Bose-Einstein condensate confined to two dimensions. Depending on the particle density, the ratio of the contact and quadrupole-quadrupole interactions, and the alignment of the quadrupole moments with respect to the confinement plane, the dispersion relation features two or four point-like roton minima, or one ring-shaped minimum. We map out the entire parameter space of the roton behavior and identify the instability regions. We propose to observe the exotic rotons by monitoring the characteristic density wave dynamics resulting from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-the-art experiments with ultracold homonuclear molecules.



قيم البحث

اقرأ أيضاً

149 - R. N. Bisset , D. Baillie , 2013
We consider the quasi-particle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these excitations onto radial and angular momentum we show that the roton modes are clearly revealed as discrete fingers in parameter space, whereas the other modes form a smooth surface. We examine the properties of the roton modes and characterize how they change with the dipole interaction strength. We demonstrate how the application of a perturbing potential can be used to engineer angular rotons, i.e. allowing us to controllably select modes of non-zero angular momentum to become the lowest energy rotons.
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, the refore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op tical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topologica l defects have been found. These systems exhibit both superfluidity and magnetic crystalline ordering and they could be realized experimentally by imparting angular momentum in the condensate.
138 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا