ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of proton and neutron pair breakings: High-spin structures of $^{124-127}$Te isotopes

166   0   0.0 ( 0 )
 نشر من قبل Praveen Chandra Srivastava Dr.
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work recently available experimental data for high-spin states of four nuclei, $^{124}_{ 52}$Te, $^{125}_{ 52}$Te, $^{126}_{ 52}$Te, and $^{127}_{ 52}$Te have been interpreted using state-of-the-art shell model calculations. The calculations have been performed in the $50-82$ valence shell composed of $1g_{7/2}$, $2d_{5/2}$, $1h_{11/2}$, $3s_{1/2}$, and $2d_{3/2}$ orbitals. We have compared our results with the available experimental data for excitation energies and transition probabilities, including high-spin states. The results are in reasonable agreement with the available experimental data. The wave functions, particularly, the specific proton and neutron configurations which are involved to generate the angular momentum along the yrast lines are discussed. We have also estimated overall contribution of three-body forces in the energy level shifting. Finally, results with modified effective interaction are also reported.



قيم البحث

اقرأ أيضاً

The 124-131Te nuclei have been produced as fission fragments in two fusion reactions induced by heavy-ions (12C + 238U at 90 MeV bombarding energy and 18O + 208Pb at 85 MeV) and studied with the Euroball array. Their high-spin level schemes have been extended to higher excitation energy from the triple gamma-ray coincidence data. The gamma-gamma angular correlations have been analyzed in order to assign spin and parity values to many observed states. Moreover the half-lives of isomeric states have been measured from the delayed coincidences between the fission-fragment detector SAPhIR and Euroball, as well as from the timing information of the Ge detectors. The behaviors of the yrast structures identified in the present work are first discussed in comparison with the general features known in the mass region, particularly the breakings of neutron pairs occupying the nuh11/2 orbit identified in the neighboring Sn nuclei. The experimental level schemes are then compared to shell-model calculations performed in this work. The analysis of the wave functions shows the effects of the proton-pair breaking along the yrast lines of the heavy Te isotopes.
In the present work we report comprehensive set of shell model calculations for arsenic isotopes. We performed shell model calculations with two recent effective interactions JUN45 and jj44b. The overall results for the energy levels and magnetic mom ents are in rather good agreement with the available experimental data. We have also reported competition of proton- and neutron-pair breakings analysis to identify which nucleon pairs are broken to obtain the total angular momentum of the calculated states. Further theoretical development is needed by enlarging model space by including $pi 0f_{7/2}$ and $ u 1d_{5/2}$ orbitals.
Background: Spin-triplet ($S=1$) proton-neutron (pn) pairing in nuclei has been under debate. It is well known that the dynamical pairing affects the nuclear matrix element of the Gamow-Teller (GT) transition and the double beta decay. Purpose: We in vestigate the effect of the pn-pair interaction in the $T=0, S=1$ channel on the low-lying spin-dipole (SD) transition. We then aim at clarifying the distinction of the role in between the SD and GT transitions. Method: We perform a three-body model calculation for the transition ${}^{80}mathrm{Ni}to{}^{80}mathrm{Cu}$, where ${}^{78}mathrm{Ni}$ is taken as a core. The strength of the pair interaction is varied to see the effect on the SD transition-strength distribution. To fortify the finding obtained by the three-body model, we employ the nuclear energy-density functional method for the SD transitions in several nuclei, where one can expect a strong effect. Results: The effect of the $S=1$ pn-pair interaction depends on the spatial overlap of the pn pair and the angular momentum of the valence nucleons; the higher the angular momentum of the orbitals, the more significant the effect. Conclusions: The dynamical $S=1$ pairing is effective even for SD states although the spatial overlap of the pn pair can be smaller than GT states. The SD transition involving high-$ell$ orbitals with the same principal quantum number is strongly affected by the dynamical $S=1$ pairing.
In the present work, the basis space in the triaxial projected shell model approach is expanded to include three and five quasiparticle configurations for odd-proton systems. This extension allows to investigate the high-spin band structures observed in odd-proton systems up to and including the second band crossing region, and as a first major application of this development, the high-spin properties are investigated for odd-mass $^{125-137}$Pr and $^{127-139}$Pm isotopes. It is shown that band crossings in the studied isotopes have mixed structures with first crossing dominated by one-proton coupled to two-neutron configuration for the lighter isotopes which then changes to three-proton configuration with increasing neutron number. Further, $gamma$-bands based on quasiparticle states are also delineated in the present work, and it is predicted that these band structures built on three-quasiparticle configurations become favoured in energy for heavier systems in the high-spin region.
We introduce the concept of neutron-proton two-particle units ($np$-Weisskopf units) to be used in the analysis of the ($^3$He,$p)$ and $(p,^3$He) added{reactions on nuclei} along the N=Z line. These are presented for the conditions relevant to the $ (n,j,ell$) orbits expected from $^{16}$O to $^{100}$Sn. As is the case of the Weisskopf units for electromagnetic transitions, the $np$-WUs will provide a simple, yet robust, measure of isoscalar and isovector $np$ pairing collective effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا