ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards continuous-wave regime teleportation for light matter quantum relay stations

192   0   0.0 ( 0 )
 نشر من قبل Sebastien Tanzilli
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a teleportation experiment involving narrowband entangled photons at 1560 nm and qubit photons at 795 nm emulated by faint laser pulses. A nonlinear difference frequency generation stage converts the 795 nm photons to 1560 nm in order to enable interference with one photon out of the pairs, i.e., at the same wavelength. The spectral bandwidth of all involved photons is of about 25 MHz, which is close to the emission bandwidth of emissive quantum memory devices, notably those based on ensembles of cold atoms and rare earth ions. This opens the route towards the realization of hybrid quantum nodes, i.e., combining quantum memories and entanglement-based quantum relays exploiting either a synchronized (pulsed) or asynchronous (continuous- wave) scenario.

قيم البحث

اقرأ أيضاً

A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
We introduce a quantum teleportation scheme that can transfer a macroscopic spin coherent state between two locations. In the scheme a large number of copies of a qubit, such as realized in a coherent two-component Bose-Einstein condensate, is telepo rted onto a distant macroscopic spin coherent state using only elementary operations and measurements. We analyze the error of the protocol with the number of particles N in the spin coherent state under decoherence and find that it scales favorably with N.
Quantum teleportation is a primitive in several important applications, including quantum communication, quantum computation, error correction, and quantum networks. In this work, we propose an optimal test for the performance of continuous-variable (CV) quantum teleportation in terms of the energy-constrained channel fidelity between ideal CV teleportation and its experimental implementation. All work prior to ours considered suboptimal tests of the performance of CV teleportation, focusing instead on its performance for particular states, such as ensembles of coherent states, squeezed states, cat states, etc. Here we prove that the optimal state for testing CV teleportation is an entangled superposition of twin-Fock states. We establish this result by reducing the problem of estimating the energy-constrained channel fidelity between ideal CV teleportation and its experimental approximation to a quadratic program and solving it. As an additional result, we obtain an analytical solution to the energy-constrained diamond distance between a photodetector and its experimental approximation. These results are relevant for experiments that make use of CV teleportation and photodetectors.
We show that the sender (Alice) and the receiver (Bob) each require coherent devices in order to achieve unconditional continuous variable quantum teleportation (CVQT), and this requirement cannot be achieved with conventional laser sources, even in principle. The appearance of successful CVQT in recent experiments is due to interpreting the measurement record fallaciously in terms of one preferred ensemble (or decomposition) of the correct density matrix describing the state. Our analysis is unrelated to technical problems such as laser phase drift or finite squeezing bandwidth.
Quantum teleportation is essential for many quantum information technologies including long-distance quantum networks. Using fiber-coupled devices, including state-of-the-art low-noise superconducting nanowire single photon detectors and off-the-shel f optics, we achieve quantum teleportation of time-bin qubits at the telecommunication wavelength of 1536.5 nm. We measure teleportation fidelities of >=90% that are consistent with an analytical model of our system, which includes realistic imperfections. To demonstrate the compatibility of our setup with deployed quantum networks, we teleport qubits over 22 km of single-mode fiber while transmitting qubits over an additional 22 km of fiber. Our systems, which are compatible with emerging solid-state quantum devices, provide a realistic foundation for a high-fidelity quantum internet with practical devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا