ﻻ يوجد ملخص باللغة العربية
Polycrystalline HfPd2Al has been synthesized using the arc-melting method and studied under ambient pressure conditions by x-ray diffraction from room temperature up to 450^oC. High pressure x-ray diffraction up to 23 GPa was also performed using Diacell-type membrane diamond anvil cells. The estimated linear thermal expansion coefficient was found to be {alpha} = 1.40(3)x10^{-5} K^{-1}, and the bulk modulus derived from the fit to the 3rd order Birch-Murnaghan EOS (BMEOS) is B0 = 97(2) GPa. Resistivity studies under applied pressure (p < 7.49 GPa) showed a linear decrease of superconducting critical temperature with increasing pressure and the slope dTc/dp = -0.13(1) K GPa^{-1}. The same behavior is observed for the electron-phonon coupling constant {lambda_{ep}}(p) that changes from 0.67 to 0.6, estimated for p = 0.05 GPa and 7.49 GPa, respectively. First principles electronic structure and phonon calculation results are presented and used to estimate the magnitude of electron-phonon interaction {lambda_{ep}} and its evolution with pressure. Theoretical results explain the experimentally observed decrease in Tc due to considerable lattice stiffening.
We report on muon spin rotation/relaxation and $^{119}$Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature,
Bi2Te3 compound has been theoretically predicted (1) to be a topological insulator, and its topologically non-trivial surface state with a single Dirac cone has been observed in photoemission experiments (2). Here we report that superconductivity (Tc
We have studied the structural and superconductivity properties of the compound LaFeAsO0.9F0.1 under pressures up to 32GPa using synchrotron radiation and diamond anvil cells. We obtain an ambient pressure bulk modulus K_0 = 78(2)GPa, compressibility
We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show
We consider superconductivity in boron (B) doped diamond using a simplified model for the valence band of diamond. We treat the effects of substitutional disorder of B ions by the coherent potential approximation (CPA) and those of the attractive for