ﻻ يوجد ملخص باللغة العربية
We induce a Poisson algebra ${cdot,cdot}_{mathcal{C}_{n,N}}$ on the configuration space $mathcal{C}_{n,N}$ of $N$ twisted polygons in $mathbb{RP}^{n-1}$ from the swapping algebra cite{L12}, which is found coincide with Faddeev-Takhtajan-Volkov algebra for $n=2$. There is another Poisson algebra ${cdot,cdot}_{S2}$ on $mathcal{C}_{2,N}$ induced from the first Adler-Gelfand-Dickey Poissson algebra by Miura transformation. By observing that these two Poisson algebras are asymptotically related to the dual to the Virasoro algebra, finally, we prove that ${cdot,cdot}_{mathcal{C}_{2,N}}$ and ${cdot,cdot}_{S2}$ are Schouten commute.
The rank $n$ swapping algebra is the Poisson algebra defined on the ordered pairs of points on a circle using the linking numbers, where a subspace of $(mathbb{K}^n times mathbb{K}^{n*})^r/operatorname{GL}(n,mathbb{K})$ is its geometric mode. In this
F. Labourie [arXiv:1212.5015] characterized the Hitchin components for $operatorname{PSL}(n, mathbb{R})$ for any $n>1$ by using the swapping algebra, where the swapping algebra should be understood as a ring equipped with a Poisson bracket. We introd
The {em rank $n$ swapping algebra} is a Poisson algebra defined on the set of ordered pairs of points of the circle using linking numbers, whose geometric model is given by a certain subspace of $(mathbb{K}^n times mathbb{K}^{n*})^r/operatorname{GL}(
A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.
In this paper, we study a certain deformation $D$ of the Virasoro algebra that was introduced and called $q$-Virasoro algebra by Nigro,in the context of vertex algebras. Among the main results, we prove that for any complex number $ell$, the category