ﻻ يوجد ملخص باللغة العربية
The fermion bag is a powerful idea that helps to solve fermion lattice field theories using Monte Carlo methods. Some sign problems that had remained unsolved earlier can be solved within this framework. In this work we argue that the fermion bag also gives insight into a new mechanism of fermion mass generation, especially at strong couplings where fermion masses are related to the fermion bag size. On the other hand, chiral condensates arise due to zero modes in the Dirac operator within a fermion bag. Although in traditional four-fermion models the two quantities seem to be related, we show that they can be decoupled. While fermion bags become small at strong couplings, the ability of zero modes of the Dirac operator within fermion bags to produce a chiral condensate, can be suppressed by the presence of additional zero modes from other fermions. Thus, fermions can become massive even without a chiral condensate. This new mechanism of mass generation was discovered long ago in lattice field theory, but has remained unappreciated. Recent work suggests that it may be of interest even in continuum quantum field theory.
We consider a field theoretical model where a SU(2) fermion doublet, subjected to non-Abelian gauge interactions, is also coupled to a complex scalar field doublet via a Yukawa and an irrelevant Wilson-like term. Despite the presence of these two chi
We introduce a new algorithm which we call the {Rational Hybrid Monte Carlo} Algorithm (RHMC). This method uses a rational approximation to the fermionic kernel together with a noisy Kennedy-Kuti acceptance step to give an efficient algorithm with no molecular dynamics integration step-size errors.
Based on a recent proposal according to which elementary particle masses could be generated by a non-perturbative dynamical phenomenon, alternative to the Higgs mechanism, we carry out lattice simulations of a model where a non-abelian strongly inter
In this contribution we lay down a lattice setup that allows for the non-perturbative study of a field theoretical model where a SU(2) fermion doublet, subjected to non-Abelian gauge interactions, is also coupled to a complex scalar field doublet via
Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermi