ﻻ يوجد ملخص باللغة العربية
We consider solutions of the defocusing nonlinear Schrodinger (NLS) equation on the half-line whose Dirichlet and Neumann boundary values become periodic for sufficiently large $t$. We prove a theorem which, modulo certain assumptions, characterizes the pairs of periodic functions which can arise as Dirichlet and Neumann values for large $t$ in this way. The theorem also provides a constructive way of determining explicit solutions with the given periodic boundary values. Hence our approach leads to a class of new exact solutions of the defocusing NLS equation on the half-line.
We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet (Neumann) boundary datum which for large $t$ tends to the periodic function $g_0^b(t)$ ($g_1^b(t)$). Assuming that the unknown Neumann (Dirichlet) boundary value t
We consider the nonlinear Schrodinger equation on the half-line with a given Dirichlet boundary datum which for large $t$ tends to a periodic function. We assume that this function is sufficiently small, namely that it can be expressed in the form $a
We consider the Cauchy problem for the defocusing Schr$ddot{text{o}}$dinger (NLS) equation with finite density initial data begin{align} &iq_t+q_{xx}-2(|q|^2-1)q=0, onumber &q(x,0)=q_0(x), quad lim_{x to pm infty}q_0(x)=pm 1. onumber end{align} Rece
The unified transform method (UTM) provides a novel approach to the analysis of initial-boundary value problems for linear as well as for a particular class of nonlinear partial differential equations called integrable. If the latter equations are fo
An explicit lifespan estimate is presented for the derivative Schrodinger equations with periodic boundary condition.