ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

121   0   0.0 ( 0 )
 نشر من قبل Nick Indriolo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (zeta_H) and molecular hydrogen fraction, f(H2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f(H2) in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042+-0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer zeta_H throughout our sample, and find a log-normal distribution with mean log(zeta_H)=-15.75, (zeta_H=1.78x10^-16 s^-1), and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H3+ observations. Ionization rates in the Galactic center tend to be 10--100 times larger than found in the Galactic disk, also in accord with prior studies.



قيم البحث

اقرأ أيضاً

We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using a steady state photodissociation region code that treats the freeze-out of gas species, grain surface chemistry, and desorption of ices from grains. The code includes PAHs, which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far ultraviolet flux on the cloud ({chi}<~ 1000; {chi}= 1= local interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic ray primary ionization rate {zeta}(crp) divided by the hydrogen nucleus density n. The H3O+ column is dominated by the second peak, and we show that if PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {zeta}(crp) or n. If there are no PAHs or very small grains at the second peak, N(H3O+) can attain such columns only if low ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used to estimate {zeta}(crp)/n, {chi}/n and A_V in them. We compare our models to Herschel observations of these two ions, and estimate {zeta}(crp) ~ 4-6 x 10^-16 (n/100 cm^-3) s^-1 and chi/n = 0.03 cm^3 for diffuse foreground clouds towards W49N.
233 - Maryvonne Gerin 2010
We report the detection of absorption lines by the reactive ions OH+, H2O+ and H3O+ along the line of sight to the submillimeter continuum source G10.6$-$0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH+ at 971 GHz, H2O+ at 1115 and 607 GHz, and H3O+ at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6$-$0.4 as well as in the molecular gas directly associated with that source. The OH+ spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O+ lines remains lower than 1 in the same velocity range, and the H3O+ line shows only weak absorption. For LSR velocities between 7 and 50 kms$^{-1}$ we estimate total column densities of $N$(OH+) $> 2.5 times 10^{14}$ cm$^{-2}$, $N$(H2O+) $sim 6 times 10^{13}$ cm$^{-2}$ and $N$(H3O+) $sim 4.0 times 10^{13}$ cm$^{-2}$. These detections confirm the role of O$^+$ and OH$^+$ in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH+ by the H2O+ column density implies that these species predominantly trace low-density gas with a small fraction of hydrogen in molecular form.
We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschels HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1 - 0 tra nsition of OH+ and the 1115 GHz 1(11) - 0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km/s with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from ~ 3 to ~ 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2 - 8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few E-8 suggests a cosmic ray ionization rate for atomic hydrogen of (0.6 - 2.4) E-16 s-1, in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H3+ and other species.
240 - David A. Neufeld 2017
We have obtained estimates for the cosmic-ray ionization rate (CRIR) in the Galactic disk, using a detailed model for the physics and chemistry of diffuse interstellar gas clouds to interpret previously-published measurements of the abundance of four molecular ions: ArH$^+$, OH$^+$, H$_2$O$^+$ and H$_3^+$. For diffuse $atomic$ clouds at Galactocentric distances in the range $R_g sim 4 - 9$ kpc, observations of ArH$^+$, OH$^+$, and H$_2$O$^+$ imply a mean primary CRIR of $(2.2 pm 0.3) exp [(R_0-R_g)/4.7,rm{kpc}] times 10^{-16} rm , s^{-1}$ per hydrogen atom, where $R_0=8.5$ kpc. Within diffuse $molecular$ clouds observed toward stars in the solar neighborhood, measurements of H$_3^+$ and H$_2$ imply a primary CRIR of $(2.3 pm 0.6) times 10^{-16},,rm s^{-1}$ per H atom, corresponding to a total ionization rate per H$_2$ molecule of $(5.3 pm 1.1) times 10^{-16},,rm s^{-1},$ in good accord with previous estimates. These estimates are also in good agreement with a rederivation, presented here, of the CRIR implied by recent observations of carbon and hydrogen radio recombination lines along the sight-line to Cas A. Here, our best-fit estimate for the primary CRIR is $2.9 times 10^{-16},,rm s^{-1}$ per H atom. Our results show marginal evidence that the CRIR in diffuse molecular clouds decreases with cloud extinction, $A_{rm V}({rm tot})$, with a best-fit dependence $propto A_{rm V}({rm tot})^{-1}$ for $A_{rm V}({rm tot}) ge 0.5$.
109 - P. Sonnentrucker 2015
We combine Herschel observations of a total of 12 sources to construct the most uniform survey of HF and H2O in our Galactic disk. Both molecules are detected in absorption along all sight lines. The high spectral resolution of the Heterodyne Instrum ent for the Far-Infrared (HIFI) allows us to compare the HF and H2O distributions in 47 diffuse cloud components sampling the disk. We find that the HF and H2O velocity distributions follow each other almost perfectly and establish that HF and H2O probe the same gas-phase volume. Our observations corroborate theoretical predictions that HF is a sensitive tracer of H2 in diffuse clouds, down to molecular fractions of only a few percent. Using HF to trace H2 in our sample, we find that the N(H2O)-to-N(HF) ratio shows a narrow distribution with a median value of 1.51. Our results further suggest that H2O might be used as a tracer of H2 -within a factor 2.5- in the diffuse interstellar medium. We show that the measured factor of ~2.5 variation around the median is driven by true local variations in the H2O abundance relative to H2 throughout the disk. The latter variability allows us to test our theoretical understanding of the chemistry of oxygen-bearing molecules in the diffuse gas. We show that both gas-phase and grain-surface chemistry are required to reproduce our H2O observations. This survey thus confirms that grain surface reactions can play a significant role in the chemistry occurring in the diffuse interstellar medium n_H < 1000 cm^-3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا