ترغب بنشر مسار تعليمي؟ اضغط هنا

Pedestrian Detection aided by Deep Learning Semantic Tasks

159   0   0.0 ( 0 )
 نشر من قبل Yonglong Tian
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep learning methods have achieved great success in pedestrian detection, owing to its ability to learn features from raw pixels. However, they mainly capture middle-level representations, such as pose of pedestrian, but confuse positive with hard negative samples, which have large ambiguity, e.g. the shape and appearance of `tree trunk or `wire pole are similar to pedestrian in certain viewpoint. This ambiguity can be distinguished by high-level representation. To this end, this work jointly optimizes pedestrian detection with semantic tasks, including pedestrian attributes (e.g. `carrying backpack) and scene attributes (e.g. `road, `tree, and `horizontal). Rather than expensively annotating scene attributes, we transfer attributes information from existing scene segmentation datasets to the pedestrian dataset, by proposing a novel deep model to learn high-level features from multiple tasks and multiple data sources. Since distinct tasks have distinct convergence rates and data from different datasets have different distributions, a multi-task objective function is carefully designed to coordinate tasks and reduce discrepancies among datasets. The importance coefficients of tasks and network parameters in this objective function can be iteratively estimated. Extensive evaluations show that the proposed approach outperforms the state-of-the-art on the challenging Caltech and ETH datasets, where it reduces the miss rates of previous deep models by 17 and 5.5 percent, respectively.



قيم البحث

اقرأ أيضاً

112 - Jiabo Huang , Shaogang Gong 2021
Whilst contrastive learning has achieved remarkable success in self-supervised representation learning, its potential for deep clustering remains unknown. This is due to its fundamental limitation that the instance discrimination strategy it takes is not class sensitive and hence unable to reason about the underlying decision boundaries between semantic concepts or classes. In this work, we solve this problem by introducing a novel variant called Semantic Contrastive Learning (SCL). It explores the characteristics of both conventional contrastive learning and deep clustering by imposing distance-based cluster structures on unlabelled training data and also introducing a discriminative contrastive loss formulation. For explicitly modelling class boundaries on-the-fly, we further formulate a clustering consistency condition on the two different predictions given by visual similarities and semantic decision boundaries. By advancing implicit representation learning towards explicit understandings of visual semantics, SCL can amplify jointly the strengths of contrastive learning and deep clustering in a unified approach. Extensive experiments show that the proposed model outperforms the state-of-the-art deep clustering methods on six challenging object recognition benchmarks, especially on finer-grained and larger datasets.
94 - Jiale Cao , Yanwei Pang , 2016
Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN cl assifies these proposals. Despite its success, there is still room for improvement. For example, CNN classifies these proposals by the full-connected layer features while proposal scores and the features in the inner-layers of CNN are ignored. In this paper, we propose a unifying framework called Multilayer Channel Features (MCF) to overcome the drawback. It firstly integrates HOG+LUV with each layer of CNN into a multi-layer image channels. Based on the multi-layer image channels, a multi-stage cascade AdaBoost is then learned. The weak classifiers in each stage of the multi-stage cascade is learned from the image channels of corresponding layer. With more abundant features, MCF achieves the state-of-the-art on Caltech pedestrian dataset (i.e., 10.40% miss rate). Using new and accurate annotations, MCF achieves 7.98% miss rate. As many non-pedestrian detection windows can be quickly rejected by the first few stages, it accelerates detection speed by 1.43 times. By eliminating the highly overlapped detection windows with lower scores after the first stage, its 4.07 times faster with negligible performance loss.
77 - Jiale Cao , Yanwei Pang , 2018
To better detect pedestrians of various scales, deep multi-scale methods usually detect pedestrians of different scales by different in-network layers. However, the semantic levels of features from different layers are usually inconsistent. In this p aper, we propose a multi-branch and high-level semantic network by gradually splitting a base network into multiple different branches. As a result, the different branches have the same depth and the output features of different branches have similarly high-level semantics. Due to the difference of receptive fields, the different branches are suitable to detect pedestrians of different scales. Meanwhile, the multi-branch network does not introduce additional parameters by sharing convolutional weights of different branches. To further improve detection performance, skip-layer connections among different branches are used to add context to the branch of relatively small receptive filed, and dilated convolution is incorporated into part branches to enlarge the resolutions of output feature maps. When they are embedded into Faster RCNN architecture, the weighted scores of proposal generation network and proposal classification network are further proposed. Experiments on KITTI dataset, Caltech pedestrian dataset, and Citypersons dataset demonstrate the effectiveness of proposed method. On these pedestrian datasets, the proposed method achieves state-of-the-art detection performance. Moreover, experiments on COCO benchmark show the proposed method is also suitable for general object detection.
Pedestrian detection in a crowd is a challenging task due to a high number of mutually-occluding human instances, which brings ambiguity and optimization difficulties to the current IoU-based ground truth assignment procedure in classical object dete ction methods. In this paper, we develop a unique perspective of pedestrian detection as a variational inference problem. We formulate a novel and efficient algorithm for pedestrian detection by modeling the dense proposals as a latent variable while proposing a customized Auto Encoding Variational Bayes (AEVB) algorithm. Through the optimization of our proposed algorithm, a classical detector can be fashioned into a variational pedestrian detector. Experiments conducted on CrowdHuman and CityPersons datasets show that the proposed algorithm serves as an efficient solution to handle the dense pedestrian detection problem for the case of single-stage detectors. Our method can also be flexibly applied to two-stage detectors, achieving notable performance enhancement.
Recently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate multiple correlated facial parts and learn different semantic features from them that they can not accurately model the relationships among the local details and can not fully explore more discriminative and fine semantic features, thus they suffer from partial occlusions and large pose variations. To address these problems, we propose a cross-order cross-semantic deep network (CCDN) to boost the semantic features learning for robust facial landmark detection. Specifically, a cross-order two-squeeze multi-excitation (CTM) module is proposed to introduce the cross-order channel correlations for more discriminative representations learning and multiple attention-specific part activation. Moreover, a novel cross-order cross-semantic (COCS) regularizer is designed to drive the network to learn cross-order cross-semantic features from different activation for facial landmark detection. It is interesting to show that by integrating the CTM module and COCS regularizer, the proposed CCDN can effectively activate and learn more fine and complementary cross-order cross-semantic features to improve the accuracy of facial landmark detection under extremely challenging scenarios. Experimental results on challenging benchmark datasets demonstrate the superiority of our CCDN over state-of-the-art facial landmark detection methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا