ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence of Lensing of the Cosmic Microwave Background by Dark Matter Halos

98   0   0.0 ( 0 )
 نشر من قبل Mathew Madhavacheril
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present evidence of the gravitational lensing of the cosmic microwave background by $10^{13}$ solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12,000 optically-selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles, and is favored over a null signal at 3.2 sigma significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

قيم البحث

اقرأ أيضاً

Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
We reconstruct the gravitational lensing convergence signal from Cosmic Microwave Background (CMB) polarization data taken by the POLARBEAR experiment and cross-correlate it with Cosmic Infrared Background (CIB) maps from the Herschel satellite. From the cross-spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0$sigma$ and evidence for the presence of a lensing $B$-mode signal at a significance of 2.3$sigma$. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null-tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.
We examine the possibility that dark matter consists of charged massive particles (CHAMPs) in view of the cosmic microwave background (CMB) anisotropies. The evolution of cosmological perturbations of CHAMP with other components is followed in a self -consistent manner, without assuming that CHAMP and baryons are tightly coupled. We incorporate for the first time the kinetic re-coupling of the Coulomb scattering, which is characteristic of heavy CHAMPs. By a direct comparison of the predicted CMB temperature/polarization auto-correlations in CHAMP models and the observed spectra in the Planck mission, we show that CHAMPs leave sizable effects on CMB spectra if they are lighter than $10^{11},{rm GeV}$. Our result can be applicable to any CHAMP as long as its lifetime is much longer than the cosmic time at the recombination ($sim 4 times 10^{5}, {rm yr}$). An application to millicharged particles is also discussed.
Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the $3{sigma}$ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield $S/N sim 4$ for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE ($A sim 1$). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.
We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by cal culating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4-sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا