ﻻ يوجد ملخص باللغة العربية
We model the split red clump of the Galactic bulge in OGLE-III photometry, and compare the results to predictions from two N-body models. Our analysis yields precise maps of the brightness of the two red clumps, the fraction of stars in the more distant peak, and their combined surface density. We compare the observations to predictions from two N-body models previously used in the literature. Both models correctly predict several features as long as one assumes an angle $alpha_{rm{Bar}} approx 30^{circ}$ between the Galactic bars major axis and the line of sight to the Galactic centre. In particular that the fraction of stars in the faint red clump should decrease with increasing longitude. The biggest discrepancies between models and data are in the rate of decline of the combined surface density of red clump stars toward negative longitudes and of the brightness difference between the two red clumps toward positive longitudes, with neither discrepancy exceeding $sim$25% in amplitude. Our analysis of the red giant luminosity function also yields an estimate of the red giant branch bump parameters toward these high-latitude fields, and evidence for a high rate ($sim$25%) of disk contamination in the bulge at the colour and magnitude of the red clump, with the disk contamination rate increasing toward sightlines further distant from the plane.
We analyzed the distribution of the RC stars throughout Galactic bulge using 2MASS data. We mapped the position of the red clump in 1 sq.deg. size fields within the area |l|<=8.5deg and $3.5deg<=|b|<=8.5deg, for a total of 170 sq.deg. The red clump s
We explore the kinematics (both the radial velocity and the proper motion) of the vertical X-shaped feature in the Milky Way with an N-body bar/bulge model. From the solar perspective, the distance distribution of particles is double-peaked in fields
Using simulations of box/peanut- (B/P-) shaped bulges, we explore the nature of the X-shape of the Milky Ways bulge. An X-shape can be associated with a B/P-shaped bulge driven by a bar. By comparing in detail the simulations and the observations we
The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the `split in the red clump from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shape
A vertical X-shaped structure was recently reported in the Galactic bulge. Here we present evidence of a similar X-shaped structure in the Shen et al. (2010) bar/boxy bulge model that simultaneously matches the stellar kinematics successfully. The X-