ﻻ يوجد ملخص باللغة العربية
Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in N-S hemispheric cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on asymmetry show that hemispheric sunspot area production is no more than 20% asymmetric for cycles 12-23 and phase lags do not exceed 20% (2 yrs) of the total cycle period. Independent studies have found a long-term trend in phase values as one hemisphere leads the other for ~four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare the findings to results from a numerical simulation of solar convection recently produced with the EULAG-MHD model. This simulation spans 1600 yrs and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long and the toroidal bands remain at too high of latitudes, some solar-like aspects of hemispheric asymmetry are reproduced. The model reproduces the synchrony of polarity
In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes in
We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes
We present low frequency observations at $315$ and $745$ MHz from the upgraded Giant Metrewave Radio Telescope (uGMRT) of the edge-on, near-by galaxy NGC 4631. We compare the observed surface brightness profiles along the minor axis of the galaxy wit
Our understanding of stellar dynamos has largely been driven by the phenomena we have observed of our own Sun. Yet, as we amass longer-term datasets for an increasing number of stars, it is clear that there is a wide variety of stellar behavior. Here
We compare the properties of clouds in simulated M33 galaxies to those observed in the real M33. We apply a friends of friends algorithm and CPROPS to identify clouds, as well as a pixel by pixel analysis. We obtain very good agreement between the nu