ﻻ يوجد ملخص باللغة العربية
Context. Planetary companions of a fixed mass induce larger amplitude reflex motions around lower-mass stars, which helps make M dwarfs excellent targets for extra-solar planet searches. State of the art velocimeters with $sim$1m/s stability can detect very low-mass planets out to the habitable zone of these stars. Low-mass, small, planets are abundant around M dwarfs, and most known potentially habitable planets orbit one of these cool stars. Aims. Our M-dwarf radial velocity monitoring with HARPS on the ESO 3.6m telescope at La Silla observatory makes a major contribution to this sample. Methods. We present here dense radial velocity (RV) time series for three M dwarfs observed over $sim5$ years: GJ 3293 (0.42M$_odot$), GJ 3341 (0.47M$_odot$), and GJ 3543 (0.45M$_odot$). We extract those RVs through minimum $chi^2$ matching of each spectrum against a high S/N ratio stack of all observed spectra for the same star. We then vet potential orbital signals against several stellar activity indicators, to disentangle the Keplerian variations induced by planets from the spurious signals which result from rotational modulation of stellar surface inhomogeneities and from activity cycles. Results. Two Neptune-mass planets - $msin(i)=1.4pm0.1$ and $1.3pm0.1M_{nept}$ - orbit GJ 3293 with periods $P=30.60pm0.02$ d and $P=123.98pm0.38$ d, possibly together with a super-Earth - $msin(i)sim7.9pm1.4M_oplus$ - with period $P=48.14pm0.12;d$. A super-Earth - $msin(i)sim6.1M_oplus$ - orbits GJ 3341 with $P=14.207pm0.007;d$. The RV variations of GJ 3543, on the other hand, reflect its stellar activity rather than planetary signals.
Context. Low mass stars are currently the best targets for searches for rocky planets in the habitable zone of their host star. Over the last 13 years, precise radial velocities measured with the HARPS spectrograph have identified over a dozen super-
Context: How planet properties depend on stellar mass is a key diagnostic of planetary formation mechanisms. Aims: This motivates planet searches around stars which are significantly more massive or less massive than the Sun, and in particular our ra
(Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed t
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to impro
We present the discovery of four new long-period planets within the HARPS high-precision sample: object{HD137388}b ($Msin{i}$ = 0.22 $M_J$), object{HD204941}b ($Msin{i}$ = 0.27 $M_J$), object{HD7199}b ($Msin{i}$ = 0.29 $M_J$), object{HD7449}b ($Msin{