ﻻ يوجد ملخص باللغة العربية
In this paper we generalize permutations to plane permutations. We employ this framework to derive a combinatorial proof of a result of Zagier and Stanley, that enumerates the number of $n$-cycles $omega$, for which $omega(12cdots n)$ has exactly $k$ cycles. This quantity is $0$, if $n-k$ is odd and $frac{2C(n+1,k)}{n(n+1)}$, otherwise, where $C(n,k)$ is the unsigned Stirling number of the first kind. The proof is facilitated by a natural transposition action on plane permutations which gives rise to various recurrences. Furthermore we study several distance problems of permutations. It turns out that plane permutations allow to study transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. Novel connections between these different distance problems are established via plane permutations.
In this paper, we introduce plane permutations, i.e. pairs $mathfrak{p}=(s,pi)$ where $s$ is an $n$-cycle and $pi$ is an arbitrary permutation, represented as a two-row array. Accordingly a plane permutation gives rise to three distinct permutations:
An alternating permutation of length $n$ is a permutation $pi=pi_1 pi_2 ... pi_n$ such that $pi_1 < pi_2 > pi_3 < pi_4 > ...$. Let $A_n$ denote set of alternating permutations of ${1,2,..., n}$, and let $A_n(sigma)$ be set of alternating permutations
The maximum drop size of a permutation $pi$ of $[n]={1,2,ldots, n}$ is defined to be the maximum value of $i-pi(i)$. Chung, Claesson, Dukes and Graham obtained polynomials $P_k(x)$ that can be used to determine the number of permutations of $[n]$ wit
In this paper we present a simple framework to study various distance problems of permutations, including the transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. These problems are ver
A permutation is centrosymmetric if it is fixed by a half-turn rotation of its diagram. Initially motivated by a question by Alexander Woo, we investigate the question of whether the growth rate of a permutation class equals the growth rate of its ev