ترغب بنشر مسار تعليمي؟ اضغط هنا

White dwarf research with Gaia

153   0   0.0 ( 0 )
 نشر من قبل Stefan Jordan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stefan Jordan




اسأل ChatGPT حول البحث

The results of the Gaia mission will have tremendous influence on many topics in white dwarf research. In this paper the current status of the Gaia mission is described. At the end a short outlook on the release scenario and the expected accuracy of the Gaia data is provided.



قيم البحث

اقرأ أيضاً

Gaia will identify several 1e5 white dwarfs, most of which will be in the solar neighborhood at distances of a few hundred parsecs. Ground-based optical follow-up spectroscopy of this sample of stellar remnants is essential to unlock the enormous sci entific potential it holds for our understanding of stellar evolution, and the Galactic formation history of both stars and planets.
The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (~ 100,000 K) input models down to a chosen effective temperature by relaxing t he models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures, and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.
143 - Sihao Cheng 2020
By comparing two age indicators of high-mass white dwarfs derived from Gaia data, two discoveries have been made recently: one is the existence of a cooling anomaly that produces the Q branch structure on the Hertzsprung--Russell diagram, the other i s the existence of double-white-dwarf merger products. The former poses a challenge for white dwarf cooling models, and the latter has implications on binary evolution and type-Ia supernovae.
Using Gaia DR2 data, we present an up-to-date sample of white dwarfs within 20 pc of the Sun. In total we identified 139 systems in Gaia DR2, nine of which are new detections, with the closest of these located at a distance of 13.05 pc. We estimated atmospheric parameters for all stellar remnants based on the Gaia parallaxes and photometry. The high precision and completeness of the Gaia astrometry allowed us to search for wide binary companions. We re-identified all known binaries where both components have accurate DR2 astrometry, and established the binarity of one of the nine newly identified white dwarfs. No new companions were found to previously known 20 pc white dwarfs. Finally, we estimated the local white dwarf space-density to be $(4.49pm0.38)times10^{-3}$ pc$^{-3}$, having given careful consideration to the distance-dependent Gaia completeness, which misses known objects at short distances, but is close to complete for white dwarfs near 20 pc.
We have established a network of 19 faint (16.5 mag $< V < $19 mag) northern and equatorial DA white dwarfs as spectrophotometric standards for present and future wide-field observatories. Our analysis infers SED models for the stars that are tied to the three CALSPEC primary standards. Our SED models are consistent with panchromatic Hubble Space Telescope ($HST$) photometry to better than 1%. The excellent agreement between observations and models validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf atmospheres extinguished by interstellar dust as accurate spectrophotometric references. Our standards are accessible from both hemispheres and suitable for ground and space-based observatories covering the ultraviolet to the near infrared. The high-precision of these faint sources make our network of standards ideally suited for any experiment that has very stringent requirements on flux calibration, such as studies of dark energy using the Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey Telescope ($WFIRST$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا