ﻻ يوجد ملخص باللغة العربية
We recently proposed to cross-correlate the diffuse extragalactic gamma-ray background with the gravitational lensing signal of cosmic shear. This represents a novel and promising strategy to search for annihilating or decaying particle dark matter (DM) candidates. In the present work, we demonstrate the potential of a tomographic-spectral approach: measuring the cross-correlation in separate bins of redshift and energy significantly improves the sensitivity to a DM signal. Indeed, the technique proposed here takes advantage of the different scaling of the astrophysical and DM components with redshift and, simultaneously, of their different energy spectra and different angular extensions. The sensitivity to a particle DM signal is extremely promising even when the DM-induced emission is quite faint. We first quantify the prospects of detecting DM by cross-correlating the Fermi Large Area Telescope (LAT) diffuse gamma-ray background with the cosmic shear expected from the Dark Energy Survey. Under the hypothesis of a significant subhalo boost, such a measurement can deliver a 5-sigma detection of DM, if the DM particle is lighter than 300 GeV and has a thermal annihilation rate. We then forecast the capability of the European Space Agency Euclid satellite (whose launch is planned for 2020), in combination with an hypothetical future gamma-ray detector with slightly improved specifications compared to current telescopes. We predict that the cross-correlation of their data will allow a measurement of the DM mass with an uncertainty of a factor of 1.5-2, even for moderate subhalo boosts, for DM masses up to few hundreds of GeV and thermal annihilation rates.
Observations of diffuse Galactic gamma ray emission (DGE) by the Fermi Large Area Telescope (LAT) allow a detailed study of cosmic rays and the interstellar medium. However, diffuse emission models of the inner Galaxy underpredict the Fermi-LAT data
We measure the cross-correlation between Fermi-LAT gamma-ray photons and over 1000 deg$^2$ of weak lensing data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), the Red Cluster Sequence Lensing Survey (RCSLenS), and the Kilo Degree
In recent years, many gamma-ray sources have been identified, yet the unresolved component hosts valuable information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of matter in the Universe has been
For the first time, the Fermi-LAT measured the angular power spectrum (APS) of anisotropies in the diffuse gamma-ray background. The data is found to be broadly compatible with a model with contributions from the point sources in the 1-year catalog,
It has been proposed that during the formation of the first generation stars there might be a dark star phase in which the power of the star comes from dark matter annihilation. The adiabatic contraction process to form the dark star would result in