ﻻ يوجد ملخص باللغة العربية
A system of two exchange-coupled Kondo impurities in a magnetic field gives rise to a rich phase space hosting a multitude of correlated phenomena. Magnetic atoms on surfaces probed through scanning tunnelling microscopy provide an excellent platform to investigate coupled impurities, but typical high Kondo temperatures prevent field-dependent studies from being performed, rendering large parts of the phase space inaccessible. We present an integral study of pairs of Co atoms on insulating Cu2N/Cu(100), which each have a Kondo temperature of only 2.6 K. In order to cover the different regions of the phase space, the pairs are designed to have interaction strengths similar to the Kondo temperature. By applying a sufficiently strong magnetic field, we are able to access a new phase in which the two coupled impurities are simultaneously screened. Comparison of differential conductance spectra taken on the atoms to simulated curves, calculated using a third order transport model, allows us to independently determine the degree of Kondo screening in each phase.
We present an extensive study of the two-impurity Kondo problem for spin-1 adatoms on square lattice using an exact canonical transformation to map the problem onto an effective one-dimensional system that can be numerically solved using the density
The archetypal two-impurity Kondo problem in a serially-coupled double quantum dot is investigated in the presence of a thermal bias $theta$. The slave-boson formulation is employed to obtain the nonlinear thermal and thermoelectrical responses. When
We calculate the differential conductance (dI/dV) corresponding to scanning tunneling spectroscopy (STS) measurements for two magnetic atoms adsorbed on a metal surface with the aid of the numerical renormalization group (NRG) technique. We find that
Many correlated metallic materials are described by Landau Fermi-liquid theory at low energies, but for Hund metals the Fermi-liquid coherence scale $T_{text{FL}}$ is found to be surprisingly small. In this Letter, we study the simplest impurity mode
We consider a quantum dot with ${cal K}{geq} 2$ orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multi-level Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric po