ﻻ يوجد ملخص باللغة العربية
It has been hypothesized that neural activities in the primary visual cortex (V1) represent a saliency map of the visual field to exogenously guide attention. This hypothesis has so far provided only qualitative predictions and their confirmations. We report this hypothesis first quantitative prediction, derived without free parameters, and its confirmation by human behavioral data. The hypothesis provides a direct link between V1 neural responses to a visual location and the saliency of that location to guide attention exogenously. In a visual input containing many bars, one of them saliently different from all the other bars which are identical to each other, saliency at the singletons location can be measured by the shortness of the reaction time in a visual search task to find the singleton. The hypothesis predicts quantitatively the whole distribution of the reaction times to find a singleton unique in color, orientation, and motion direction from the reaction times to find other types of singletons. The predicted distribution matches the experimentally observed distribution in all six human observers. A requirement for this successful prediction is a data-motivated assumption that V1 lacks neurons tuned simultaneously to color, orientation, and motion direction of visual inputs. Since evidence suggests that extrastriate cortices do have such neurons, we discuss the possibility that the extrastriate cortices play no role in guiding exogenous attention so that they can be devoted to other functional roles like visual decoding or endogenous attention.
Visually induced neuronal activity in V1 displays a marked gamma-band component which is modulated by stimulus properties. It has been argued that synchronized oscillations contribute to these gamma-band activity [... however,] even when oscillations
Primary visual cortex (V1) is the first stage of cortical image processing, and a major effort in systems neuroscience is devoted to understanding how it encodes information about visual stimuli. Within V1, many neurons respond selectively to edges o
Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, howev
It has been hypothesized that Gamma cortical oscillations play important roles in numerous cognitive processes and may involve psychiatric conditions including anxiety, schizophrenia, and autism. Gamma rhythms are commonly observed in many brain regi
The accurate visual tracking of a moving object is a human fundamental skill that allows to reduce the relative slip and instability of the objects image on the retina, thus granting a stable, high-quality vision. In order to optimize tracking perfor