ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple explanation of the quantum limits of genuine $n$-body nonlocality

39   0   0.0 ( 0 )
 نشر من قبل Adan Cabello
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adan Cabello




اسأل ChatGPT حول البحث

Quantum $n$-body correlations cannot be explained with $(n-1)$-body nonlocality. However, this genuine $n$-body nonlocality cannot surpass certain bounds. Here we address the problem of identifying the principles responsible for these bounds. We show that, for any $n ge 2$, the exclusivity principle, as derived from axioms about sharp measurements, and a technical assumption give the exact bounds predicted by quantum theory. This provides a unified explanation of the bounds of single-body contextuality and $n$-body nonlocality, and connects two programs towards understanding quantum theory.

قيم البحث

اقرأ أيضاً

Quantum networks allow in principle for completely novel forms of quantum correlations. In particular, quantum nonlocality can be demonstrated here without the need of having various input settings, but only by considering the joint statistics of fix ed local measurement outputs. However, previous examples of this intriguing phenomenon all appear to stem directly from the usual form of quantum nonlocality, namely via the violation of a standard Bell inequality. Here we present novel examples of quantum nonlocality without inputs, which we believe represent a new form of quantum nonlocality, genuine to networks. Our simplest examples, for the triangle network, involve both entangled states and joint entangled measurements. A generalization to any odd-cycle network is also presented. Finally, we conclude with some open questions.
Recently the authors in [Phys. Rev. Lett. 125, 090401 (2020)] considered the following scenario: Alice and Bob each have half of a pair of entangled qubit state. Bob measures his half and then passes his part to a second Bob who measures again and so on. The goal is to maximize the number of Bobs that can have an expected violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality with the single Alice. By taking the maximally entangled pure two-qubit state as an example, it has been constructively proved that arbitrarily many independent Bobs can share the nonlocality with the single Alice. Here we demonstrate that arbitrarily many independent observers can share the nonlocality of a single arbitrary dimensional bipartite entangled but not necessary two-qubit entangled state. Further, taking the generalized GHZ states as an example, we show that at most two Charlies can share the genuine nonlocality of a single generalized GHZ state with an Alice and a Bob.
The network structure offers in principle the possibility for novel forms of quantum nonlocal correlations, that are proper to networks and cannot be traced back to standard quantum Bell nonlocality. Here we define a notion of genuine network quantum nonlocality. Our approach is operational and views standard quantum nonlocality as a resource for producing correlations in networks. We show several examples of correlations that are genuine network nonlocal, considering the so-called bilocality network of entanglement swapping. In particular, we present an example of quantum self-testing which relies on the network structure; the considered correlations are non-bilocal, but are local according to the usual definition of Bell locality.
Quantum nonlocality is arguably among the most counter-intuitive phenomena predicted by quantum theory. In recent years, the development of an abstract theory of nonlocality has brought a much deeper understanding of the subject. In parallel, experim ental progress allowed for the demonstration of quantum nonlocality in a wide range of physical systems, and brings us close to a final loophole-free Bell test. Here we combine these theoretical and experimental developments in order to explore the limits of quantum nonlocality. This approach represents a thorough test of quantum theory, and could provide evidence of new physics beyond the quantum model. Using a versatile and high-fidelity source of pairs of polarization entangled photons, we explore the boundary of quantum correlations, present the most nonlocal correlations ever reported, demonstrate the phenomenon of more nonlocality with less entanglement, and show that non-planar (and hence complex) qubit measurements can be necessary to reproduce the strong qubit correlations that we observed. Our results are in remarkable agreement with quantum predictions.
We study the relations between quantum coherence and quantum nonlocality, genuine quantum entanglement and genuine quantum nonlocality. We show that the coherence of a qubit state can be converted to the nonlocality of two-qubit states via incoherent operations. The results are also generalized to qudit case. Furthermore, rigorous relations between the quantum coherence of a single-partite state and the genuine multipartite quantum entanglement, as well as the genuine three-qubit quantum nonlocality are established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا