ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of the Leggett-Rice effect in a unitary Fermi gas

214   0   0.0 ( 0 )
 نشر من قبل Stefan Trotzky
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of $^{40}$K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter $gamma = 1.08(9)$ and a bare transverse spin diffusivity $D_0^perp = 2.3(4),hbar/m$ for a normal-state gas initialized with full polarization and at one fifth of the Fermi temperature, where $m$ is the atomic mass. One might expect $gamma = 0$ at unitarity, where two-body scattering is purely dissipative. We observe $gamma rightarrow 0$ as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a non-zero $gamma$. Tuning the scattering length $a$, we find that a sign change in $gamma$ occurs in the range $0 < (k_F a)^{-1} lesssim 1.3$, where $k_F$ is the Fermi momentum. We discuss how $gamma$ reveals the effective interaction strength of the gas, such that the sign change in $gamma$ indicates a switching of branch, between a repulsive and an attractive Fermi gas.



قيم البحث

اقرأ أيضاً

177 - K. Aikawa , S. Baier , A. Frisch 2014
The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in atomic and condensed-matter physics. H ere, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.
We present measurements of the local (homogeneous) density-density response function of a Fermi gas at unitarity using spatially resolved Bragg spectroscopy. By analyzing the Bragg response across one axis of the cloud we extract the response functio n for a uniform gas which shows a clear signature of the Bose-Einstein condensation of pairs of fermions when the local temperature drops below the superfluid transition temperature. The method we use for local measurement generalizes a scheme for obtaining the local pressure in a harmonically trapped cloud from the line density and can be adapted to provide any homogeneous parameter satisfying the local density approximation.
We study the stability of a thermal $^{39}$K Bose gas across a broad Feshbach resonance, focusing on the unitary regime, where the scattering length $a$ exceeds the thermal wavelength $lambda$. We measure the general scaling laws relating the particl e-loss and heating rates to the temperature, scattering length, and atom number. Both at unitarity and for positive $a ll lambda$ we find agreement with three-body theory. However, for $a<0$ and away from unitarity, we observe significant four-body decay. At unitarity, the three-body loss coefficient, $L_3 propto lambda^4$, is three times lower than the universal theoretical upper bound. This reduction is a consequence of species-specific Efimov physics and makes $^{39}$K particularly promising for studies of many-body physics in a unitary Bose gas.
The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body evaporation and three-body re-combination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal magic trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments performed with unitary 133 Cs and 7 Li atoms fully support our predictions and enable quantitative measurements of the 3-body recombination rate in the low temperature domain. In particular, we measure for the first time the Efimov inelasticity parameter $eta$ * = 0.098(7) for the 47.8-G d-wave Feshbach resonance in 133 Cs. Combined 133 Cs and 7 Li experimental data allow investigations of loss dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body loss. We confirm the 1/T 2 temperature universality law up to the constant $eta$ *.
250 - E. D. Kuhnle , S. Hoinka , P. Dyke 2010
The contact ${cal I}$, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the intera ction parameter $1/(k_F a)$, where $k_F$ is the Fermi wave-vector and $a$ is the $s$-wave scattering length, and the temperature $T/T_F$, where $T_F$ is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا