ترغب بنشر مسار تعليمي؟ اضغط هنا

Is Compton cooling sufficient to explain evolution of observed quasi-periodic oscillations in Outburst sources?

46   0   0.0 ( 0 )
 نشر من قبل Santanu Mondal
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In outburst sources, quasi-periodic oscillation (QPO) frequency is known to evolve in a certain way: in the rising phase, it monotonically goes up till a soft intermediate state is achieved. In the propagating oscillatory shock model, oscillation of the Compton cloud is thought to cause QPOs. Thus, in order to increase QPO frequency, Compton cloud must collapse steadily in the rising phase. In decline phases, exactly opposite should be true. We investigate cause of this evolution of the Compton cloud. The same viscosity parameter which increases the Keplerian disk rate, also moves the inner edge of the Keplerian component, thereby reducing the size of the Compton cloud and reducing the cooling time scale. We show that cooling of the Compton cloud by inverse Comptonization is enough for it to collapse sufficiently so as to explain the QPO evolution. In the Two Component Advective Flow (TCAF) configuration of Chakrabarti-Titarchuk, centrifugal force induced shock represents boundary of the Compton cloud. We take the rising phase of 2010 outburst of Galactic black hole candidate H~1743-322 and find an estimation of variation of $alpha$ parameter of the sub-Keplerian flow to be monotonically rising from $0.0001$ to $0.02$, well within the range suggested by magneto-rotational instability. We also estimate the inward velocity of the Compton cloud to be a few meters/second which is comparable to what is found in several earlier studies of our group by empirically fitting the shock locations with the time of observations.

قيم البحث

اقرأ أيضاً

In June 2015, the black hole X-ray binary (BHXRB) V404 Cygni went into outburst for the first time since 1989. Here, we present a comprehensive search for quasi-periodic oscillations (QPOs) of V404 Cygni during its recent outburst, utilizing data fro m six instruments on board five different X-ray missions: Swift/XRT, Fermi/GBM, Chandra/ACIS, INTEGRALs IBIS/ISGRI and JEM-X, and NuSTAR. We report the detection of a QPO at 18 mHz simultaneously with both Fermi/GBM and Swift/XRT, another example of a rare but slowly growing new class of mHz-QPOs in BHXRBs linked to sources with a high orbital inclination. Additionally, we find a duo of QPOs in a Chandra/ACIS observation at 73 mHz and 1.03 Hz, as well as a QPO at 136 mHz in a single Swift/XRT observation that can be interpreted as standard Type-C QPOs. Aside from the detected QPOs, there is significant structure in the broadband power, with a strong feature observable in the Chandra observations between 0.1 and 1 Hz. We discuss our results in the context of current models for QPO formation.
We performed axisymmetric hydrodynamical simulations of oscillating tori orbiting a non-rotating black hole. The tori in equilibrium were constructed with a constant distribution of angular momentum in a pseudo-Newtonian potential (Klu{z}niak-Lee). M otions of the torus were triggered by adding sub-sonic velocity fields: radial, vertical and diagonal to the tori in equilibrium. As the perturbed tori evolved in time, we measured $L_{2}$ norm of density and obtained the power spectrum of $L_{2}$ norm which manifested eigenfrequencies of tori modes. The most prominent modes of oscillation excited in the torus by a quasi-random perturbation are the breathing mode and the radial and vertical epicyclic modes. The radial and the plus modes, as well as the vertical and the breathing modes will have frequencies in an approximate 3:2 ratio if the torus is several Schwarzschild radii away from the innermost stable circular orbit. Results of our simulations may be of interest in the context of high-frequency quasi-periodic oscillations (HF QPOs) observed in stellar-mass black hole binaries, as well as in supermassive black holes.
We analyse four light curves obtained at high time resolution (~ 0.1 s) with the 11-m Southern African Large Telescope, at the ends of two normal outbursts and one superoutburst of the dwarf nova VW Hyi. All of these contain at least some Dwarf Nova Oscillations (DNOs), which, when at their highest amplitudes, are seen in unprecedented detail. In addition to the expected DNOs with periods > 20 s we find a previously unknown modulation at 13.39 s, but none at shorter periods. The various DNOs and their interaction with the longer period Quasi-periodic Oscillations are interpreted in terms of the model of magnetically controlled flow from an accretion disc proposed earlier in this series of papers. Our observations include rare DNOs very late in outburst; we find that the fundamental period does not increase beyond ~ 90 s, which is the same value that the independent ``longer period DNOs converge on.
We have previously applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central Kerr black hole in the three Galactic microquasars, GRS 1915+105, GRO J1655-40, and XTE J1550-564. Here we explore t he alternative possibility that the central compact body is a super-spinning object (or a naked singularity) with the external space-time described by Kerr geometry with a dimensionless spin parameter a = cJ/GM2 > 1.We calculate the relevant spin intervals for a subset of HF QPO models considered in the previous study. Our analysis indicates that for all but one of the considered models there exists at least one interval of a > 1 that is compatible with constraints given by the ranges of the central compact object mass independently estimated for the three sources. For most of the models, the inferred values of a are several times higher than the extreme Kerr black hole value a = 1. These values may be too high since the spin of superspinars is often assumed to rapidly decrease due to accretion when a >> 1. In this context, we conclude that only the epicyclic and the Keplerian resonance model provides estimates that are compatible with the expectation of just a small deviation from a = 1.
We study the Rossby wave instability model of high-frequency quasi-periodic oscillations (QPO) of microquasars. We show ray-traced light curves of QPO within this model and discuss perspectives of distinguishing alternative QPO models with the future Large Observatory For X-ray Timing (LOFT) observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا